Tips:
- Turn on the gas just before lighting your match;
- Turn off the gas to extinguish the flame;
- Ensure tubing is not going to catch on fire, ideally, tape it down.
Tips:
There are two types of filtration used in CHEM 103. Follow the links to learn more about filtration techniques:
Spectrophotometers contain a white light source, a diffraction grating, and a slit to select a specific wavelength. The selected wavelength of light passes through a sample, and any light that is absorbed is quantified as the absorbance. The absorbance range is 0 (no light absorbed) to 1 or more (lots of light absorbed). According to Beer’s law, absorbance and concentration are directionally proportional: samples with a high concentration of light absorbing particles have a high absorbance, and those with a low concentration of light absorbing particles have a low absorbance. In principle, any difference in absorbance can be measured with the spectrophotometer, but in practice, it is impossible to tell the difference between two samples if they are (1) too optically dense, meaning basically no light gets through, (2) too dilute, meaning practically all of the light gets through, giving both samples an absorbance of nearly 0, or (3) too similar, meaning there are not enough significant figures.
In everyday life, you have probably noticed that color is often indicative of chemistry. For example, fruit often changes color when it ripens: a green banana contains complex starches (yuck), but a yellow banana contains simple sugars (yum). Color intensity is also indicative of chemistry, particularly in solutions. Today, you will use a spectrophotometer to quantify color hue and intensity for a relatively simple solution of Kool-Aid. This will allow you to derive the relationship between Kool-Aid concentration and color intensity, known as the Beer’s Law.
Spectrophotometers contain a white light source, a diffraction grating, and a slit to select a specific wavelength. The selected wavelength of light passes through a sample, and any light that is absorbed is quantified as the absorbance. The absorbance range is 0 (no light absorbed) to 1 or more (lots of light absorbed). According to Beer’s law, absorbance and concentration are directionally proportional: samples with a high concentration of light absorbing particles have a high absorbance, and those with a low concentration of light absorbing particles have a low absorbance. In principle, any difference in absorbance can be measured with the spectrophotometer, but in practice, it is impossible to tell the difference between two samples if they are (1) too optically dense, meaning basically no light gets through, (2) too dilute, meaning practically all of the light gets through, giving both samples an absorbance of nearly 0, or (3) too similar, meaning there are not enough significant figures. This is analogous to a graduated cylinder, which cannot measure above the highest graduation line or below the lowest graduation line, and cannot differentiate between volumes that are within the uncertainty of the measurement.
Fill out this worksheet. Graph may be submitted on Canvas or printed and attached to the worksheet.
Before we get started, we need to cover a few topics:
Please read through the safety instructions. You are responsible for knowing this general information and working safely in the laboratory. You will receive more specific instructions before the start of lab each week.
You will be assigned a cabinet of glassware and hardware. You are responsible for ensuring that you start and end the semester with all of the right equipment. You will receive an inventory list to check over.
For your first lab activity, you will familiarize yourself with making scientific measurements and performing simple scientific calculations. The first lab activity is Penny Statistics.