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19Data from a recent field experiment suggests that differences in participation rates are responsible for much
20of the variations in charity auction revenues across formats. We provide a theoretical framework for the
21analysis of this and other related results. The model illustrates the limits of previous results that assume full
22participation and introduces some new considerations to the choice of auction mechanism. It also implies,
23however, that the data cannot be explained in terms of participation costs alone: there must exist
24mechanism-specific obstacles to participation.
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30 1. Introduction

31 From the small town silent auction that raises a few hundred
32 dollars to the $70 million Robin Hood annual benefit in New York City
33 (Anderson, 2007), charities and non-profits often use auctions to
34 transform donations in kind into cash. The choice of format
35 constitutes a difficult decision problem, however, even under
36 idealized circumstances: if all bidders, win or lose, derive some
37 benefit from monies raised, revenue equivalence does not hold, even
38 if valuations of the object itself are private and independent. 1 It is only
39 in the last few years, however, that a small but vibrant literature on
40 the economics of charity auctions has developed.2

41 The best known theoretical finding is perhaps Goeree et al.'s
42 (2005) result that when the standard (SIPV, or single object,
43 independent private values) auction with risk neutral bidders is
44 extended so that all bidders also receive some revenue proportional
45 benefit, all-pay auctions produce more revenue than any winner-pay
46 auction. The intuition, as they characterize it, is that winner-pay
47 mechanisms suppress bids because when one bidder tops the others,
48 she wins the object but loses the chance to free ride on the benefits
49 associated with the best of the other bids. While there are few, if any,
50 examples of all-pay auctions, the result seems to rationalize the

51widespread use of raffles and lotteries, both of which could be viewed
52as practical variations on the all-pay theme. Engers and McManus
53(2007) have since shown that if bidders who contribute experience an
54additional “warm glow” (Andreoni, 1995), the superiority of the all-
55pay over both first-price and second-price winner pay mechanisms
56survives in the limit, as the number of bidders increases.
57Two recent lab experiments would seem to support these results.
58Davis et al. (2006) find that lotteries raise more revenue than English
59auctions, while Schram and Onderstal (forthcoming) conclude that
60lotteries do worse than all-pay auctions but better than first price
61auctions. On the other hand, Carpenter et al. (2008), who conduct one
62of the few field experiments on charity auctions, reach a quite
63different conclusion, namely, that the all-pay mechanism generates
64no more revenue, in a statistical sense, than the second price sealed
65bid, and that both generate less revenue than the familiar first price
66sealed bid. The difference is the result of endogenous participation:
67the model in Goeree et al. (2005) and the experimental designs in
68Schram and Onderstal (forthcoming) and Davis et al. (2006) all
69assume a fixed number of bidders but Carpenter et al. (2008) found
70that in the field, the ratio of active to potential bidders, or
71participation rate, was much lower under all-pay rules.
72These experimental results prompt an important question: what is
73the theoretical relationship between participation costs, understood
74here in the broadest sense of the word, and revenue in auctions with
75proportional benefits? Our purpose in this paper is to describe and
76then characterize a model of endogenous participation that allows for
77mechanism-specific entry costs.
78The next section reports, in the form of a pair of propositions (the
79proofs of which are available as an online appendix), the optimal
80symmetric bid functions and expected revenue functions for the first
81price, second price and all-pay sealed bid SIPV auctions in which all
82bidders, active or otherwise, earn a benefit that is proportional to
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83 revenue, and those who contribute to the charity (the winner in first
84 and second price auctions, but all active bidders in all-pay auctions)
85 experience a warm glow proportional to their bids, under the
86 assumption that the submission of a bid imposes some cost on
87 bidders. This representation of the participation problem owes much
88 to the recent work of Menezes and Monteiro (2000) and, much
89 earlier, Samuelson (1985).
90 In the third section, we explore the properties of these bid and
91 revenue functions, both within and across mechanisms, a more
92 complicated task than first seems. We know from the work of Menezes
93 and Monteiro (2000), for example, that in the absence of revenue
94 proportional benefits, revenue equivalence is preserved under the
95 introduction of participation costs, but that this (common) revenue
96 function can exhibit someunusual properties. It need not be the case, for
97 example, that expected revenue rises with the number of potential
98 bidders, or that in the limit, it is independent of the distribution of
99 private values. On the other hand, we learn from Engers and McManus
100 (2007) that even without participation costs, there is no fixed order of
101 revenues in small (low N) auctions with revenue proportional benefits
102 and warm glow. To cultivate a sense of what properties do, and do not,
103 prevail in practice, we calculate and plot numerical bid and revenue
104 functions for several members of the Kumaraswamy (1980) family of
105 boundedvalue distributions. In the process,we considerwhat costs, and
106 cost differentials, would be consistent with the experimental literature.
107 The fourth section considers the relationship of this model to
108 previous empirical work, and we conclude with a brief discussion of
109 possible future research.

110 2. Optimal bids and expected revenues

111 Our model starts with N≥2 potential risk neutral bidders whose
112 private values for some indivisible object can be modeled as
113 independent draws from some continuously differentiable distribu-
114 tion function F over the unit interval [0,1]. These values are known to
115 bidders before the decision to participate (or not) must be made.
116 Auction revenues are used to provide a service fromwhich all bidders,
117 active or inactive, benefit. As in Goeree et al. (2005), the value to each
118 bidder is a constant fraction 0≤αb1 of these revenues. Some active
119 bidders will also experience a “warm glow” (Andreoni, 1995; Engers
120 and McManus 2006Q3 ) equal to a fraction 0≤γb1−α of their own
121 contribution to auction revenue. The limit on γ is needed to ensure
122 that each bidder's optimization problem is well-defined, implies that
123 β=α+γ, the sum of the common return and warm glow, is also less
124 than one.
125 Following Samuelson (1985) and Menezes and Monteiro (2000),
126 potential bidders face some cost of participation 0≤c j b1, j= f(irst
127 price), s(econd price),a(ll pay), the value of which could be mecha-
128 nism-specific. As a result, the number of active bidders is not
129 predetermined. Samuelson (1985) defines the cost in terms of the
130 resources committed to “bid preparation” but, on the basis of the
131 previous discussion, our interpretation is somewhat broader and
132 includes, for example, the disutility of participation in an unfair
133 mechanism. While the cost is allowed to vary across mechanisms – a
134 feature we exploit to explore both the effects of participation costs per
135 se and cost differentials on the “traditional” revenue ordering – it is
136 assumed to be the same for all bidders. As we also note in the
137 conclusion, however, this form of bidder asymmetry is an important
138 direction for future research.
139 Within this framework, the derivation of optimal bid functions
140 draws heavily on both Menezes and Monteiro (2000) and Engers and
141 McManus (2007):

142 Proposition 1. The Bayes-Nash symmetric bid functions are:
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154It is then not difficult to derive the expected revenue functions:

155Proposition 2. Given the bid functions (1), (2) and (3), expected
156revenues are equal to:

Rf = N∫1

Pv
f ðc f ;NÞ FðvÞ

N−1f ðvÞσ f ðvÞdv ð6Þ

157158
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159160and:
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161162
163The proofs of both propositions and other technical material are
164available in the online appendix.

1653. Comparison of mechanisms

1663.1. Numerical analysis and the Kumaraswamy distribution

167We observed, in the introduction, that there is no fixed order for
168the three mechanisms under endogenous participation. This does not
169mean, however, that the mechanisms are without “common proper-
170ties” that should inform both research and practice. To determine
171whether such properties exist, we shall compare participation, bid
172and revenue functions when the distribution of private values over
173the unit interval is a member of the Kumaraswamy (1980) family:

F v ja; bð Þ = 1− 1−xa
# $b a; b N 0 ð9Þ

174175with mean bΓ 1 + 1
a

! "
ΓðbÞ= Γ 1 + 1

a
+ b

! "
.3 Much of the discussion

176that follows will focus on the four particular examples with the implied
177density functions depicted in Fig. 1: F(v|1,1), the standard uniform
178distribution with mean 0.50, and a benchmark in the literature; F(v|
1792,2), which has almost the same mean as the uniform distribution
180(0.53) but is hump-shaped, the equivalent of an auction in which few
181“extreme bidders” should be expected; F(v|3,1) , with mean 0.25,
182which produces auctions with an expected preponderance of “low
183value bidders”; and F(v|1,5), with mean 0.83, which instead leads to
184auctions with a disproportionate number of “high value bidders.”

1853.2. Threshold values and participation rates

186It is an immediate consequence of Proposition 1 that if participa-
187tion costs in first price and all-pay auctions are the same, the
188threshold values and rates of participation should be, too. To
189understand this, we first note that if the “threshold bidder” – that is,

3 The Kumaraswamy distribution is one of the simplest and most tractable families
of “double bounded” distributions.
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190 the bidder with private value Pv
j – does indeed decide to bid, she

191 should bid zero. With likelihood FðPv
jÞN−1, she will, as the lone

192 participant, win the auction and receive benefits equal to her private
193 value Pv

j.4

194 With likelihood 1−FðPv
jÞN−1, she will lose the auction, however,

195 and receive benefits Bj that depend (only) on the actions of other
196 bidders. It follows, then, that the net benefits of participation are

197 F Pv
j

! "N−1

Pv
j + 1−F Pv

j
! "N−1

% &
Bj−c j. Because the benefits Bj are not

198 limited to participants, however, she receives a benefit equal to

199 1−F Pv
j

! "N−1
% &

Bj when she does not submit a bid. The two are equal

200 when FðPv
jÞN−1

Pv
j = cj, the result in Eq. (4). Furthermore, under both

201 mechanisms, the threshold depends just on the costs of participation
202 cj, the number of potential bidders N and the nature of the distribution
203 function F(v).
204 Table 1 reports the values of this common threshold and the
205 implied non-participation rates as the auction size or number of
206 potential bidders N and the costs of participation c vary for each of the
207 four distributions of private values. One of the first properties of the
208 data to catch our attention was the responsiveness of the threshold to
209 variations in cost. When the distribution of private values is bell-
210 shaped, for example, the difference between c=0 or costless
211 participation and c=0.01, a cost equal to one fiftieth of the
212 representative potential bidder's private value, is the difference
213 between no threshold and one equal, in the case N=5, to 0.46. In
214 other terms, there is now an almost 1 percent (0.0079=F(0.46)5=
215 (0.38)5) chance that no one will want to submit a bid, despite the fact
216 that there are few low value bidders. Whether c=0.01 constitutes a
217 small obstacle or not is to some extent amatter of context – if the costs
218 of participation are for the most part psychic, then for a familiar
219 mechanism, costs could well be much lower than this – we were
220 nevertheless struck by how quickly bidders are driven from the
221 auction. 5

222 Furthermore, in small auctions, even a small increase in the
223 number of potential bidders induces a substantial increase in the
224 threshold. In the uniform case when c=0.01, for example, the
225 threshold rises from 0.10 to 0.40 as N increases from 2 to 5, andwhen
226 N=20, which, for most practical purposes, is still a small auction, the
227 threshold rises to 0.79. To provide a more intuitive characterization
228 of the same phenomenon, increases in the number of potential bidders

229produce small, and ever smaller, increases in the expected number of
230active bidders, from 3=5(0.6) when N=5 to 3.7=10(0.37) when
231N=10, and then to 4.2=20(0.21) when N=20. In this particular
232case, in otherwords, the addition of 15more potential bidders caused
233the expected number of active bidders to increase by little more than
234one.
235There are at least two senses in which the pattern is a robust one.
236First, while it is possible to construct examples in which, over some
237interval, the expected number of active bidders falls as the number of
238potential bidders rises, this occurs in none of the cases represented in
239Table 1. 6 Second, and to our initial surprise, for a fixed participation
240cost c, the relationship between auction size and the number of active
241bidders doesn't vary much with the distribution of private values.
242Consider, for example, the situation in which c=0.05 and N=10.
243While the threshold value varies from 0.70 in the auction with few
244extreme bidders to, on the one hand, 0.41 in the auction with low
245value bidders or, on the other hand, 0.94 in the auction with high
246value bidders, the likelihoods of non-participation are, respectively,
2470.75, 0.79 and 0.72, consistent with 2.55, 2.08 and 2.78 active bidders.
248If the auction is then doubled in size, so that N=20, the expected
249numbers of active bidders become 2.71, 2.31 and 2.89.
250Table 1 also hints, however, that both the threshold and expected
251number of active bidders will be sensitive to the costs of participation.
252When there are 10 potential bidders whose private values are drawn
253from the uniform distribution, for example, an increase in costs from
2540.01 to 0.05 causes the threshold to rise, from 0.63 to 0.74, and the
255expected number of active bidders to fall, from 3.69 to 2.59. Curiously,
256perhaps, almost the same number (1.10) of active bidders are “lost”
257under other distributions: 1.14=3.69−2.55 when the distribution is
258bell-shaped, 1.11=3.19−2.08 when it is skewed to the right, and
2591.16=3.94−2.78 when it is skewed to the left.
260A comparison between Eqs. (4) and (5) shows that the participation
261threshold should be higher, ceteris paribus, in second price auctions, and

Fig. 1. Kumuraswamy density functions.

4 She pays nothing to acquire the object but, as a result, enjoys no warm glow and,
since auction revenues are zero, no common return.

5 We are grateful to an anonymous reviewer for the reminder that the “size” of these
costs cannot be classified a priori.

Table 1 t1:1

Threshold values and non-participation rates under The FP and AP mechanisms.
t1:2
t1:3Participation

cost=0.01
Participation
cost=0.05

Participation
cost=0.10

t1:4Threshold
value

Share of
inactive
bidders

Threshold
value

Share of
inactive
bidders

Threshold
value

Share of
inactive
bidders

t1:5(1,1) N=2 0.10 0.10 0.22 0.22 0.32 0.32
t1:6N=5 0.40 0.40 0.55 0.55 0.63 0.63
t1:7N=10 0.63 0.63 0.74 0.74 0.79 0.79
t1:8N=20 0.79 0.79 0.86 0.86 0.89 0.89
t1:9(2,2) N=2 0.17 0.06 0.30 0.17 0.38 0.26
t1:10N=5 0.46 0.38 0.57 0.54 0.63 0.63
t1:11N=10 0.63 0.63 0.70 0.75 0.74 0.80
t1:12N=20 0.74 0.80 0.79 0.86 0.82 0.90
t1:13(1,3) N=2 0.06 0.17 0.14 0.36 0.20 0.49
t1:14N=5 0.19 0.48 0.29 0.64 0.35 0.73
t1:15N=10 0.32 0.68 0.41 0.79 0.46 0.84
t1:16N=20 0.44 0.82 0.51 0.88 0.56 0.91
t1:17(5,1) N=2 0.46 0.02 0.61 0.08 0.68 0.15
t1:18N=5 0.80 0.33 0.87 0.49 0.90 0.58
t1:19N=10 0.90 0.61 0.94 0.72 0.95 0.78
t1:20N=20 0.95 0.79 0.97 0.86 0.98 0.89

This table reports the threshold value and share of bidders who are inactive under
either the FP or AP mechanism for various numbers of potential bidders and
participation costs under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and
left-skewed (5,1) distributions of private values. t1:21

6 At least one reader has wondered whether this is ever possible. If the addition of one
more potential bidder causes anactivebidder towithdraw, thenwouldn't that bidderhave
been better off as a non-participant beforehand, too? A simple example, adapted from
Menezes andMonteiro (2000), suggests otherwise, however: if F(v |3, 1 )=v3and c=0.3,
for example, therewill be 1.21291 active bidders, in expectation,whenN=5, but 1.21262
when N=4 and 1.21247 when N=6.
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262 this is reflected in Table 2, which reports second price thresholds for
263 various numbers of potential biddersN and costs c. In superficial terms,
264 the difference between thedefinitions in Eqs. (4) and (5) is the presence
265 of an additional term, αðN−1ÞFðPv

sÞN−2 ð1−FðPv
sÞÞσsðPv

sÞ, in the latter.
266 In behavioral terms, this is the return to themarginal bidderwhen there
267 is just one other active bidder, and her (now non-zero) threshold bid
268 determines what the winner pays and, therefore, the common return.
269 This has at least two important implications for empiricalwork. First and
270 foremost, if costs are the same, the participation rate in second price
271 auctions should exceed that in either first price or all-pay auctions.
272 Second, in second price auctions, the decision to participate is sensitive
273 to the rate of common return α.
274 The results i`n Table 2 provide some sense of how different the
275 thresholds will be in practice. In the extreme case of N=2
276 potential bidders with low participation costs, there is no
277 threshold at all. That is, both bidders will participate, no matter
278 what their private values. In fact, in auctions with few(er) low
279 value bidders, in particular when the distribution of private values
280 is either F(v|2,2) or F(v|5,1), the threshold is zero even when costs
281 are 0.10. To understand this, recall that in the case N=2 – or, with
282 NN2 potential bidders, the sub-case in which there are two active
283 bidders – the representative bidder knows that she will either win
284 the auction or determine what the winner pays and therefore the
285 public benefits that accrue to both bidders. This is sometimes
286 sufficient to induce low value bidders to participate, despite the
287 costs.
288 While full participation is a special feature of (some) “minimal”
289 or N=2 second price auctions, the difference remains substantial
290 as auction size increases. In the uniform case, the increase in the
291 threshold under either the first price or all-pay mechanisms, from
292 0.10 to 0.79, for example, as the number of potential bidders
293 increases from 2 to 20 when costs are 0.01, stands in marked
294 contrast to the increase from 0 to 0.62 under the analogous second
295 price mechanism. In an auction with 20 potential bidders, this is
296 the equivalent of an almost 85% increase in the number of active
297 bidders, from 4.11 to 7.58. The size of this effect is not an artifact
298 of the choice of distribution function: for the same auction size
299 and participation costs, the numbers of expected bidders are 4.06
300 and 7.56 when the distribution is F(v|2,2), 3.60 and 7.18 when it is
301 F(v|1,3), and 4.27 and 7.74 when it is F(v|5,1). In short, in the

302absence of cost differentials, it seems that second price auctions
303will be more “active,” and to the extent that this is a secondary
304objective for the charity, an important point in their favor.
305Otherwise, the samebroadpatterns characterizeparticipation across
306mechanisms. The expected number of active bidders, for example, is not
307all that sensitive to thedistributionof private values, but is responsive to
308variations in cost. Under the bell-shaped distribution, for example, the
309expected number of active bidders when N=20 (7.56) and costs are
3100.01 is almost identical to that under the uniform (7.58), and not far
311from those in the right (7.18) and left-skewed (7.74) distributions, but
312as costs rise to 0.05, the expected number of active bidders falls to 6.66.

3133.3. Bid functions

314Consider, for comparison purposes, the familiar result that in a first
315price auction without spillovers or participation costs, bidders whose
316values are drawn from a uniform distribution will “shade” their bids

317by an amount equal to 1
N

! "th
of their value, and bid N−1

N
v. This is

318depicted, for N=15, as the solid line in the upper left panel in Fig. 2, in
319which various first price bid functions have been plotted. Relative to
320this benchmark, the introduction of revenue proportional benefits
321(α=0.25) and warm glow (γ=0.10), represented in the same panel
322by the dotted line, seems to function like an ad valorem subsidy to
323bidders, an observation easily substantiated on the basis of (1): when

324v=0 and F(v)=v, the bid function is N−1
ð1−γÞN−α

v, which is α + γN
ð1−γÞN−α

325percent more than would be bid in their combined absence.
326Under some conditions, the subsidy is sufficient to reverse bid
327shading. In the diagram, a bidder whose private value is 1, for
328example, will bid 1.057; in general, σ f(v) will exceed v under the
329uniform distribution when α+γNN1, an inequality that seems likely
330to be satisfied in most large auctions. Furthermore, the subsidy is
331increasing in both the common return α and warm glow γ, as
332expected, and decreasing in the number of potential bidders N.
333The further addition of participation costs equal to 0.05 exerts a
334dramatic effect on the bid function, as the dashed line in the same
335panel reveals. The behavior of bidders is now sharply nonlinear, both
336because bids are undefined below the threshold but also because the
337bid function is now concave above the threshold. Close to the
338threshold, bids increase very rapidly and then level off. As a result, the
339effect of participation costs on the value of the average bid, as opposed
340to the number of bidders, is quite limited: a bidder who decides to
341participate knows that if others follow suit, their valuesmust (also) be
342quite high, and therefore bids aggressively. A bidder whose value is
343close to the maximum (1), for example, bids almost as much as she
344would in the absence of participation costs.
345The fourth and final function plotted as a series of dots and dashes in
346the same panel is the equilibrium bid function when the common
347return, warm glow and participation cost remain in place, but the
348number of potential bidders is reduced to N=5. It underscores the fact
349that one standard result onauction size andfirst pricebids– thatbidders
350withmore competitors are more aggressive because they cannot afford
351to shade their bids as much – doesn't hold in this environment, at least
352not for all values. In visual terms, the reason is that the smaller auction
353also has a lower threshold, so that a bidder who is indifferent about
354participationwhenN=15, andwhowould therefore submit a zero bid if
355she did participate, would find it in her interest to submit a positive bid
356when N=5. For high value bidders, the “shading effect” appears to
357dominate; for low(er), but still above the second threshold, value
358bidders, the “participationeffect”does, another important consideration
359in the estimation of bid functions.
360The other panels in Fig. 2 show the same four bid functions for
361the three alternative value distributions, and suggest that these
362results are robust. Consider what is perhaps the least similar case, the
363situation depicted in the lower left panel in which there is a

Table 2t2:1

Threshold values and non-participation rates under the SP mechanism.
t2:2
t2:3 Participation

cost=0.01
Participation
cost=0.05

Participation
cost=0.10

t2:4 Threshold
value

Share of
inactive
bidders

Threshold
value

Share of
inactive
bidders

Threshold
value

Share of
inactive
bidders

t2:5 (1,1) N=2 0.00 0.00 0.00 0.00 0.04 0.04
t2:6 N=5 0.21 0.21 0.30 0.30 0.35 0.35
t2:7 N=10 0.44 0.44 0.51 0.51 0.54 0.54
t2:8 N=20 0.62 0.62 0.67 0.67 0.69 0.69
t2:9 (2,2) N=2 0.00 0.00 0.00 0.00 0.01 0.00
t2:10 N=5 0.32 0.20 0.40 0.29 0.44 0.34
t2:11 N=10 0.50 0.43 0.55 0.51 0.57 0.54
t2:12 N=20 0.62 0.62 0.65 0.67 0.66 0.69
t2:13 (1,3) N=2 0.00 0.00 0.03 0.08 0.06 0.18
t2:14 N=5 0.10 0.26 0.14 0.37 0.17 0.42
t2:15 N=10 0.19 0.47 0.23 0.54 0.25 0.57
t2:16 N=20 0.29 0.64 0.32 0.69 0.33 0.70
t2:17 (5,1) N=2 0.00 0.00 0.00 0.00 0.00 0.00
t2:18 N=5 0.70 0.16 0.76 0.25 0.79 0.30
t2:19 N=10 0.84 0.41 0.87 0.49 0.88 0.52
t2:20 N=20 0.91 0.61 0.92 0.66 0.93 0.68

This table reports the threshold value and share of bidders who are inactive under
either the SP mechanism (a=0.25,b=0.35) for various numbers of potential bidders
and participation costs under uniform (1,1), hump-shaped (2,2), right-skewed (1,3)
and left-skewed (5,1) distributions of private values.t2:21
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364 preponderance of low value bidders. It should come as no surprise
365 that even in the standard case – that is, no common return, no warm
366 glow, and no costs of participation – bids are no longer proportional
367 to values: because (small) variations in private value do not have
368 much effect on the likelihood that a high value bidder will win in this
369 environment, bids are not adjusted much either. Furthermore, unlike
370 the uniform case, bidders never bid more than their values, at least
371 for the parameter values considered here.
372 This said, the two panels share at least three important features.
373 First, it still appears that in the absence of participation costs, the
374 introduction of a common return and warm glow have much the
375 same effect on bids as an ad valorem subsidy. Second, those with
376 values close to the maximum aren't much affected by participation
377 costs or, in broader terms, the effects of these costs on bid behavior
378 diminish with value. Third, with both shading and participation
379 effects at work, high and low value bidders respond quite differently
380 to an increase in auction size.
381 The characterization of second price bid functions is much less
382 complicated. First and foremost, the four panels in Fig. 3 provide
383 visual confirmation that with the common return and warm glow
384 present, variations in the number of potential bidders N or
385 participation costs c influence the participation decision but not,
386 conditional on participation, the bid itself. In effect, there exists a

387“one size fits all” second price bid function that is “activated” for
388some combinations of N and c but not others. In the uniform case
389depicted in the upper left panel, for example, a bidder with private
390value v=0.30 will bid 0.502 when α=0.25 and γ=0.10 when
391costs c are zero, but not bid (as opposed to a bid of zero) when
392costs are 0.05, but another bidder with a value just 0.01 higher
393will bid 0.511 in both situations.
394Furthermore, consistent with intuition, this one size fits all bid
395function differs across distributions but in all cases reflects some
396inflation of bids relative to the standard auction, in which it is
397dominant to bid one's value, no matter what the distribution of
398values. This inflation no longer resembles an ad valorem subsidy,
399however, as it did in first price auctions. Under a uniform
400distribution, for example, the difference declines not just in
401proportional, but absolute, terms as value increases, from 0.242
402(=0.242−0.00) when v=0 to 0.11(=1.11−1.00) when v= 1.
403The same is true when the distribution of values is either hump
404shaped or skewed to the left, but not when it is skewed right,
405when the difference increases from 0.094 when v=0 to 0.111
406when v=1. Since the difference between standard and charity-
407inflated second price bids does not vary much across distributions
408for high value bidders – indeed, is the same for bidders with v=1
409– the explanation is found in the differences for low value bidders.

Fig. 2. Optimal bids in FP auctions as a function of private value under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and left-skewed (5,1) distributions.
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410 Consider, for example, second price auctions with a preponder-
411 ance of high value bidders which, as illustrated in the lower right
412 panel of Fig. 3, produces the largest difference in the behavior of low
413 value bidders: a bidder whose value is close to zero will bid almost
414 nothing, for example, in the absence of common return and warm
415 glow, but more than 0.75 in their presence. The intuition is that in
416 the (expected) presence of many high value bidders, the benefits to
417 low value bidders of an inflated bid – in particular, the possible
418 increase in the “second price” and therefore auction revenues and
419 common return – exceed the costs of an improbable “win.”
420 The effects of participation costs on all-pay bids is illustrated in
421 Fig. 4. Consider, for example, the behavior of the median bidder in
422 the case where the distribution of private values is uniform. Since
423 the thresholds under the first price and all-pay mechanisms are
424 the same, we know, for example, that this bidder will not
425 participate when there are N=15 potential bidders and costs are
426 equal to 0.05, or one tenth of her private value. It is important to
427 note, however, that even if participation was costless, the optimal
428 bid would be less than one hundredth of one percent of this value
429 or, to be more precise, 4.38×10−5, a bid that is itself a substantial
430 (in proportional terms, at least) increase over the optimal bid in
431 the equivalent non-charity auction, which is 2.85×10−5.

432The uniform case also exhibits the predictable bid inflation
433associated with charity auctions, one that, in this case, increases in
434absolute, but decreases in relative, terms. It also demonstrates that
435the common view that increased competition restrains bidders
436when bids are forfeited does not hold in the presence of
437participation costs.7 In this case, the upper left panel of Fig. 4
438reveals that high value bidders, at least, are more aggressive when
439N=15 than N=5. In broader terms, the difference in thresholds
440causes the bid functions to cross once, a pattern reminiscent of
441first price auctions: for low(er) values in their common domain,
442bids are smaller with N=15 than N=5, while the opposite is true
443for high(er) values.
444Unlike the first price auction, however, even the behavior of very
445high value bidders is sensitive to the existence of participation costs.
446The so-called “maximal bidder”will bid 1.36 in a charity auction with
447participation costs of 0.05, and 1.44 in the same auction without such
448costs.

7 In fact, it doesn't hold in their absence, either: from Eq. (3), the optimal bid
function when c, and therefore v, are zero, is N−1

N
1

1−β
vN , the value of which must only

eventually decline in N.

Fig. 3. Optimal bids in SP auctions as a function of private value under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and left-skewed (5,1) distributions.
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449 All of these features are robust with respect to the distribution of
450 private values, or at least the four distributions considered here.
451 Finally, Fig. 5 allows for the comparison of bid functions across
452 mechanisms and distributions in the special, if now familiar, case of
453 N=15 potential bidders, participation costs c=0.05, common return
454 α=0.25 and warm glow γ=0.10. The surprise, perhaps, is how little
455 can be said about the relative sizes of bids across mechanisms. One
456 obvious exception is that for all values in their common domain,
457 second price bidders bid strictly more than their first price counter-
458 parts, a result that carries over from standard auctions. It is not even
459 the case that both are always more aggressive than those who must
460 forfeit their bids under the all-pay format; in fact, for three of the four
461 distributions pictured here, those with very high values will bid more
462 in all-pay than either first or second price auctions. The intuition for
463 this is that with revenue proportional benefits, such bidders are, in
464 effect, subsidized by their rivals. This is consistent with the
465 observation that the exception is the distribution associated with a
466 preponderance of low value bidders, depicted in the lower left panel:
467 under these conditions, the common return is never sufficient to
468 rationalize bids well in excess of private values.
469 This said, under all four distributions, all-pay bids are smallest for
470 low(er) value bidders, and remain so over much of the common
471 domain before surpassing (at least) first price bids, a consequence of

472the fact that all-pay bidders forfeit their bids, no matter what the
473outcome of the auction.

4743.4. Revenue functions

475Our principal interests here are not the bid function themselves,
476but their revenue implications. To this end, consider Fig. 6, which plots
477the variation in expected revenue as a function of auction size (N)
478across both distributions and mechanisms. Its most obvious feature is
479that in every case, revenue rises, at a diminishing rate, with the
480number of potential bidders.8

481Furthermore, with the limited exception of the F(v|1, 3)
482distribution, expected revenue more or less levels off after the
483first dozen or so potential bidders. A similar pattern characterizes
484the standard auction, but the explanation is a little different. In the
485standard case, the first order statistic for private values is a
486concave function of the number of bidders with an upper limit of
4871, the upper bound of the distribution of values, but in charity

8 It remains to be seen, therefore, whether the example in Menezes and Monteiro
(2000) of a revenue function that, after some point, declines in N , is a practical one.

Fig. 4. Optimal bids in AP auctions as a function of private value under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and left-skewed (5,1) distributions.
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488 auctions with endogenous participation, this is amplified by the
489 fact that as auction size increases, the number of active bidders
490 also increases at an ever diminishing rate. The map from potential
491 to active bidders also helps to explain the fact that revenues in the
492 low value F(v|1,3) auction do not level off as soon: as a review of
493 Tables 1 and 2 reveals, there are fewer active bidders, ceteris
494 paribus, in this environment.
495 Some will be surprised that even with N=40 potential bidders,
496 the first and second price mechanisms produce such different
497 revenue. The problem is that here, too, intuition is based on the
498 case of compact distributions and costless participation. From Eqs. (1)
499 and (2), it follows that in both cases, the winner's payment, and
500 therefore auction revenue, are equal to σ f(1)= σ s(1)=(1−γ)−1, no
501 matter what the distribution of values.
502 This leads us to broader conclusions about the relative perfor-
503 mance of mechanisms. Fig. 6 suggests that at least two inequalities are
504 robust with respect to the distribution of private values. For any
505 number of potential bidders N, both the second price and all pay
506 formats “revenue dominate” their first price equivalent. Both inequal-
507 ities are consistent with previous results for auctions with a fixed
508 number of active bidders (that is, costless participation) and have the
509 same intuition.

510The response of the second price/all pay revenue differential to
511variations in the number of potential bidders is more complicated,
512but not much so. Under all four distributions, the all pay
513mechanism eventually produces more revenue, in expectation,
514than its second price equivalent. For auctions with either a
515uniform or bell-shaped distribution of values, it happens almost
516at once – that is, when there are 3 or more potential bidders – and
517for the auction with a preponderance of high value bidders, it
518holds even in the limiting case N=2. It is only when there is a
519preponderance of low value bidders that the second price
520mechanism does better in auctions of intermediate size (under
521the assumed parameter values, N less than 30). To understand this,
522recall that with so many low value bidders, high value bidders
523aren't subsidized enough to bid very aggressively.
524Fig. 7, which depicts the relationship(s) between expected
525revenue and participation costs for auctions with N=10 potential
526bidders, leads to some important, if unexpected, conclusions.
527Consistent with intuition, revenues decline as participation costs
528rise, across both distributions and auction formats. In the case of
529second price auctions, however, the decline is almost impercep-
530tible: if private values are uniformly distributed, for example,
531expected revenue declines from 0.953 when c=0 to 0.937 when

Fig. 5. Optimal bids in FP, SP and AP auctions under uniform (1,1), hump-shaped (2,2), right-skewed (1,3) and left-skewed (5,1) distributions.
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532 c=0.15, or 30 percent of the median value. From an operational
533 perspective, charities that do not know what it costs to participate
534 in their auctions will sometimes find that the second price
535 mechanism serves them best, despite the results in Fig. 6. To
536 understand this, recall that in second price auctions, cost
537 influences the decision to participate but not, conditional on
538 participation, the bid itself.
539 The fact that the all pay mechanism is (much) more cost sensitive
540 than the second price leads to an important reversal: consistent with
541 intuition, the all pay format is more lucrative for charities when there
542 are no, or even few, obstacles to participation, but as participation
543 becomes more difficult, the premium shrinks and is eventually
544 reversed. Both, however, do better than the first price mechanism
545 no matter what the costs of participation.

546 4. Relationship to previous empirical work

547 Our immediate purpose here is to provide a theoretical
548 framework for the analysis of endogenous participation in charity
549 auctions, but it is helpful to consider the possible implications of
550 the model for previous empirical work. It should be emphasized,
551 however, that the exercise is a speculative one: it assumes, for
552 example, that bidders submit their equilibrium bids, a matter of
553 considerable debate itself. This said, the lab experiments of Davis
554 et al. (2006) and Schram and Onderstal (forthcoming), for
555 example, which find that raffles and all-pay auctions do well, are
556 consistent with the interpretation of “fixed N designs” as
557 environments with zero participation cost. Our model also predicts

558that notwithstanding the dramatic effects of even small costs on
559participation thresholds and therefore individual bid functions,
560this result should be robust with respect to the introduction of a
561small common cost.
562Under the same assumptions, the model also tells us that on its
563own, endogenous participation cannot explain the underperfor-
564mance of the all-pay mechanism in Carpenter et al. (2008) field
565experiment. They found that there were more active bidders under
566the first price format than either the second price or all-pay which
567implies that the order participation thresholds satisfies Pv

f bPv
sb Pv

a.
568In the absence of cost differentials across mechanisms, however,
569the model implies, and Fig. 7 illustrates, that more bidders will
570participate in second price auctions than either first price or all-
571pay auctions, that is, Pv

s bPv
f = Pv

a . To be consistent with the
572equilibrium predictions of our model requires, at a minimum, that
573participation costs in first price auctions be smaller than either
574alternative.
575The further observation that the second price and all-pay
576mechanisms in Carpenter et al. (2008) produced about the same
577revenue, and that both produced less than the first price, implies that
578participation costs in first price auctions cf are smaller than in the
579other mechanisms. The implications of their revenue data for cs and ca

580are harder to pin down, but Fig. 7 also hints that unless the costs of
581participation are implausibly large, the two mechanisms would not
582produce the same equilibrium revenue under a diverse set of
583conditions unless it cost bidders more to participate in the all-pay.
584In short, then, a reconciliation of the field data with the model
585requires that caNcsNc f.

Fig. 6. Expected revenue as a function of the number of potential bidders, with α=0.25, β=0.35 and c=0.05. Legend: FP — solid line, SP — dashed line, AP — dotted line.
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586 5. Conclusion

587 The framework described here calls to mind a number of
588 opportunities, both theoretical and empirical, for further research. The
589 recent lab experiments outlined in Carpenter et al. (2010), for example,
590 offer a first look at the effects of controlled variation in participation
591 costs. It is clear, however, that there remains much work to do on
592 mechanism-specific differences in costs. For example, are there
593 substantial differences in the costs of bid preparation or cognitive
594 costs? Are some mechanisms perceived to be fairer than others?
595 The model itself does not allow for variation in participation costs
596 across bidders, one of several possible asymmetries thatmerit attention.
597 Some preliminary work by Bos (2008), for example, suggests that if the
598 distributions from which bidders' private values are drawn are
599 sufficiently different, all-pay auctions will not do well. In a similar
600 vein, while the bidders in ourmodel are risk neutral, it seems reasonable
601 to expect that risk aversion, and differences in risk aversion across
602 bidders, will affect the relative performance of charity auction
603 mechanisms. Last but not least, we do not knowmuch about the effects
604 of behavioral biases and “bidder heuristics” on charity auctions.
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610Appendix A. Bid and revenue functions for “Endogenous
611participation in charity auctions”

612This section derives the equilibrium bid and revenue functions for
613the first price sealed bid, second price sealed bid and all-pay charity
614auctions, the basis for Propositions 1 and 2 in the paper.

6151. First price sealed bid

616The representative bidder must decide whether or not to
617participate and, if she does, what type v̂ to announce or, equivalently,
618what bid σ f ðv̂Þ to submit. To this end, consider first the conditions
619under which someone with the private value v≥Pvwill find it optimal
620to reveal her true typewhen the participation threshold v is assumed
621fixed. With likelihood CN−1

M FðPvÞ
ðN−1Þ−Mð1−FðPvÞÞ

M , where Cp
q =

622p!
ðp−qÞ!q!

, she will compete with M other bidders for the object and,

623conditional on M≥1, the first order statistic of their values (that is,
624the maximum) has the distribution function Gðx;MÞ = ðFðxÞ−
625FðPvÞÞ

M = ð1−FðPvÞÞ
M If M=0, there will of course be no rivals and,

626therefore, no first order statistic. The conditional return on the bid
627σ f ð v̂Þ for fixed M≥1 is then:

EU v̂; v;Mð Þ = ∫ v̂

Pv
v− 1−βð Þσ f v̂ð Þ

! "
gðx;MÞdx + α∫

Pv

v̂
σ f ðxÞgðx;MÞdx ð1Þ

628629where gðx;MÞ = dGðx;MÞ= dx = MðFðxÞ−FðPvÞÞ
M−1f ðxÞ= ð1−FðPvÞÞ

M

Fig. 7. Expected revenue as a function of participation cost, with α=0.25, β=0.35 and N=10. Legend: FP — solid line, SP — dashed line, AP — dotted line.
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630 is the conditional density function of the first order statistic. The first
631 term in (1) represents the bidder's expected returnwhen shewins the
632 auction – because she earns both the common return ασ f ð v̂Þ on her
633 bid and experiences the warm glow γσ f ð v̂Þ in this case, her “net bid”
634 is ð1−ðα + γÞÞσ f ðv̂Þ = ð1−βÞσ f ðv̂Þ – while the second term is the
635 expected benefit that still accrues to her when she loses.
636 It follows that the unconditional expected return, EUð v̂; vÞ, will be:

EUð v̂; vÞ = FðPvÞ
N−1ðv−ð1−βÞσ f ð v̂ÞÞ

+ ∑N−1
M=1C

N−1
M FðPvÞ

N−1−Mð1−FðPvÞÞ
MEUð v̂; v;MÞ

= FðPvÞ
N−1ðv−ð1−βÞσ f ð v̂ÞÞ

+ ðv−ð1−βÞσ f ð v̂ÞÞ∑N−1
M=1C

N−1
M FðPvÞ

N−1−Mð1−FðPvÞÞ
M∫v̂

Pv
gðx;MÞdx

+ α∑N−1
M=1C

N−1
M FðPvÞ

N−1−Mð1−FðPvÞÞ
M∫

Pv
v̂
BF ðxÞgðx;MÞdx

= FðPvÞ
N−1ðv−ð1−βÞσ f ð v̂ÞÞ + ðFð v̂ÞN−1−FðPvÞ

N−1Þðv−ð1−βÞσ f ð v̂ÞÞ

+ α∑N−1
M=1C

N−1
M FðPvÞ

N−1−MM∫1
v̂
ðFðxÞ−FðPvÞÞ

M−1f ðxÞσ f ðxÞdx

ð2Þ

637638 after substitution for G(x,M) and g(x,M), where the first term on the
639 right hand side of each equality is the expected return in the casewhere
640 there are no other bidders, and the last equality follows from the fact
641 that ∫v̂

Pv
gðx;MÞ = ðFð v̂Þ−FðPvÞÞ

M = ð1−FðPvÞÞ
M and that, as a conse-

642 quence of the binomial theorem, ∑N−1
M=1C

N−1
M FðPvÞ

N−1−MðFð v̂Þ−
643 FðPvÞÞ

M = Fð v̂ÞN−1−FðPvÞ
N−1.

644 The derivative of EUð v̂; vÞ with respect to the bidder's choice
645 variable v̂ is therefore:

∂EUð v̂; vÞ
∂ v̂ = −ð1−βÞFð v̂ÞN−1 dσ f ð v̂Þ

d v̂

+ ðN−1ÞFð v̂ÞN−2f ð v̂Þðv−ð1−βÞσ f ð v̂ÞÞ

−αf ð v̂Þσ f ð v̂Þ∑N−1
M=1C

N−1
M MFðPvÞ

N−1−MðFð v̂Þ−FðPvÞÞ
M−1

= −ð1−βÞFð v̂ÞN−1 dσ f ð v̂Þ
d v̂

+ ðN−1ÞFð v̂ÞN−2f ð v̂Þðv−ð1−βÞσ f ð v̂ÞÞ

−αðN−1ÞFð v̂ÞN−2f ð v̂Þσ f ð v̂Þ

ð3Þ

646647 where the second line follows from a corollary of the binomial theorem,
648 ∑N−1

M=1C
N−1
M MFðPvÞ

N−1−MðFð v̂Þ−FðPvÞÞ
M−1 = ðN−1ÞFðPvÞ

N−2. The first

649 order condition for a SBNE is that ∂EUð v̂; vÞ
∂ v̂ =0 at v̂ = v, which leads,

650 after some simplification, to the first order differential equation:

dσ f ðvÞ
dv

+
ðN−1Þð1−γÞ

ð1−βÞ
f ðvÞ
FðvÞ

σ f ðvÞ = ðN−1Þ
ð1−βÞ

f ðvÞ
FðvÞ

v ð4Þ

651652
653 While Eq. (4) is not exact, there exists an integrating factor, F(v)θ,

654 where θ = ðN−1Þð1−γÞ
ð1−βÞ

, so that:

dðσ f ðvÞFðvÞθÞ
dv

=
N−1
1−β

FðvÞθ−1f ðvÞv ð5Þ

655656 or:

σ f ðvÞFðvÞθ = N−1
1−β

∫FðxÞθ−1f ðxÞxdx + k ð6Þ

657658 where k is a constant of integration. Because the optimal threshold bid,
659 σ f ðPvÞ, and therefore the product σ f ðPvÞFðPvÞ

θ, are both zero, it follows

660that9 :

σ f ðvÞ = N−1
ð1−βÞ

1
FðvÞθ

∫v
Pv
FðxÞθ−1f ðxÞxdx ð7Þ

661662or, after integration by parts and further simplification:

σ f ðvÞ = 1
1−γ

v− FðPvÞ
θ

FðvÞθ Pv−
1

FðvÞθ
∫v

P
v FðxÞ

θdx

" #
ð8Þ

663664
665Inasmuch as the participation threshold is not predetermined,
666however, the optimal bid function (8) is not a reduced form. To this
667end, recall that the revenue proportional benefits of the auction are
668not conditional on participation, and observe that a potential bidder
669with private value v should be indifferent between participation (and
670the submission of a zero bid) and non-participation. If such a bidder
671does participate, the likelihood that she will win the auction is
672FðPvÞ

N−1, in which case she receives a benefit equal to her private value
673Pv. (Since σ f ðPvÞ = 0; there is neither a common return nor a warm
674glow.) With likelihood CN−1

M FðPvÞ
ðN−1Þ−Mð1−FðPvÞÞ

M , on the other
675hand, she will lose the auction to one of M≥1 other bidders, but
676receive a benefit that is equal to a fraction α of the expectedmaximum
677bid, or α∫1

Pv
gðx;MÞσ f ðxÞdx. The net benefit of participation is

678therefore:

FðPvÞ
N−1v + α∑N−1

M = 1 C
N−1
M FðPvÞ

ðN−1Þ−Mð1−FðPvÞÞ
M∫1

Pv
gðx;MÞσ f ðxÞdx−c f ð9Þ

679680where c f is the cost of participation in a (f)irst price auction. The net
681benefit of non-participation is equal to:

α∑N−1
M = 1 C

N−1
M FðPvÞ

ðN−1Þ−Mð1−FðPvÞÞ
M∫1

P
v gðx;MÞσ f ðxÞdx ð10Þ

682683since the externalities that other bidders produce are not limited
684to participants. The “threshold bidder” is therefore someone for
685whom:

FðPvÞ
N−1

Pv = c f ð11Þ

686687
688This condition defines an implicit function in which the partici-
689pation threshold v depends on the costs of participation cf, the
690number of potential bidders N and, implicitly, the shape of the
691distribution function F(v). If the effects of the first are more or less
692predictable – if potential bidders have better outside options, fewer of
693themwill participate – the implications of the second are more subtle
694and call for some comment. As the number of potential bidders
695increases, so, too, does the likelihood that a particular active bidder
696will lose whatever she has “invested” in the auction which, in turn,
697causes the threshold to rise. It is then not obvious that an increase in
698the number of potential bidders or, if one prefers, auction size, will
699always lead to an increase in the expected number of active bidders
700and, so, expected revenue.
701It is important to note, however, that this participation effect is not
702the result of some increased desire to free ride on the contributions of
703other bidders. The threshold Pv in (11) does not depend on either the
704common return α or warm glow γ: it is the same condition, in fact,
705that Menezes and Monteiro (2002) Q4derive for their “no spillover”
706model. The reason is that non-participants benefit from these
707spillovers, too.
708Charities will be less interested in bid functions and their
709properties than expected revenue Rf and, to this end, we note that
710since the density function of the first order statistic for all N private

9 In Engers and McManus (2006), the optimal bid at the “threshold” – in their case,
the lower limit on the compact support of F – is indeterminate. The difference is that,
in their case, the likelihood that a bidder with the threshold value wins the auction is
zero.
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711 values is NF(v)N−1f(v), Rf will be equal to:

Rf = N∫1
Pvf ðc

f ;NÞ FðvÞ
N−1f ðvÞσ f ðvÞdv ð12Þ

712713 where the threshold value is written Pv
f ðcf ;NÞ as a reminder that the

714 lower limit is not fixed in the usual sense.

715 2. Second price sealed bid auction

716 Thederivationof the SBNEbid and expected revenue functions in the
717 second price auction calls for the introduction of another distribution
718 function, J(x,M), the conditional distribution of the second order
719 statistic for private values when there areM≥2 other active bidders:

Jðx;MÞ = M
FðxÞ−FðPvÞ
1−FðPvÞ

% &M−1
−ðM−1Þ

FðxÞ−FðPvÞ
1−FðPvÞ

% &M
ð13Þ

720721
722 It will also be useful to note that the likelihood that a bidder who
723 announces type v̂ is the runner-up is:

M
Fð v̂Þ−FðPvÞ
1−FðPvÞ

% &M−1
1−Fðv̂Þ−FðPvÞ

1−FðPvÞ

% &
=

MðFð v̂Þ−FðPvÞÞ
M−1ð1−Fð v̂ÞÞ

ð1−FðPvÞÞM

ð14Þ

724725 since it is her bid, σsð v̂Þ, that determines the winner's payment.
726 With this in mind, with likelihood FðPvÞ

N−1, where Pv once more
727 denotes the relevant participation threshold, the representative
728 bidder will have no active competitors. If it is assumed that in an
729 auction with one bidder, the “second price” is zero, then such a
730 bidder would earn a benefit of v, no matter what bid σsð v̂Þ she
731 submits.
732 With likelihood ðN−1ÞFðPvÞ

N−2ð1−FðPvÞÞ, on the other hand, she
733 will compete with just one other bidder (M=1), with expected
734 benefits equal to:

EUð v̂; v;1Þ = ∫ v̂

Pv
ðv−ð1−βÞσ sðxÞÞgðx;1Þdx +

ð1−Fð v̂ÞÞ
ð1−FðPvÞÞ

ασ sð v̂Þ

=
1

ð1−FðPvÞÞ
∫ v̂

Pv
ðv−ð1−βÞσ sðxÞÞf ðxÞdx +

ð1−Fð v̂ÞÞ
ð1−FðPvÞÞ

ασ sð v̂Þ

ð15Þ
735736
737 The first term is the (conditional onM=1) expected benefit when
738 she wins – the difference between this term and its equivalent under
739 the first price mechanism is that the relevant bid is now σ s(x) rather
740 than σ sð v̂Þ – and the second captures the fact that when she loses, the
741 value of her bid, σ sð v̂Þ, determines the winner's payment and
742 therefore the value of the common benefit.
743 Finally, she will face M≥2 competitors with likelihood
744 CN−1

M FðPvÞ
N−1−Mð1−FðPvÞÞ

M, with expected benefits:

EUð v̂; v;MÞ = ∫ v̂

Pv
ðv−ð1−βÞσ sðxÞÞgðx;MÞdx

+
MðFð v̂Þ−FðPvÞÞ

M−1ð1−Fð v̂ÞÞ
ð1−FðPvÞÞM

ασ sð v̂Þ

+ α∫1
v̂
σ sðxÞjðx;MÞdx

ð16Þ

745746 where:

jðx;MÞ = dJðx;MÞ
dx

=
MðM−1ÞðFðxÞ−FðPvÞÞ

M−2ð1−FðxÞÞf ðxÞ
ð1−FðPvÞÞM

ð17Þ

747748 is the density function of the second order statistic. As before, the first
749 and second terms represent, respectively, the expected benefits when

750she wins, and when she loses but submits the second highest bid. The
751additional third term measures the direct spillover when she is
752neither the first nor second price bidder.
753With some simplification, the unconditional return EUðv; v̂Þ can
754then be written:

EUðv; v̂Þ = FðPv Þ
N−1v + ðN−1ÞFðPvÞ

N−2∫ v̂

Pv
ðv−ð1−βÞσsðxÞÞf ðxÞdx

+ αðN−1ÞFðPvÞ
N−2ð1−Fð v̂ÞÞσsð v̂Þ

+ ∑N−1
M=2 C

N−1
M FðPvÞ

N−1−MM ∫ v̂

Pv
ðv−ð1−βÞσsðxÞÞðFðxÞ−FðPvÞ

M−1f ðxÞdx
% &

+ αð1−Fð v̂ÞÞσsð v̂Þ∑N−1
M=2 C

N−1
M MFðPvÞ

N−1−MðFðv̂Þ−FðPvÞÞ
M−1

+ α∑N−1
M=2 C

N−1
M MðM−1ÞFðPvÞ

N−1−M

# ∫1
v̂
σsðxÞðFðxÞ−FðPvÞÞ

M−2ð1−FðxÞÞf ðxÞdx
! "

ð18Þ

755756
757The effects of variation in v̂ on EUðv; v̂Þ are a little easier to
758calculate than first seem because the derivatives of the fifth and sixth
759terms each contain, with opposite signs, the term αð1−Fð v̂ÞÞσsð v̂Þ
760∑N−1

M = 2 C
N−1
M MðM−1ÞFðPvÞ

N−1−MðFð v̂Þ−FðPvÞÞ
M−2f ð v̂Þ. It follows that:

∂EUðv; v̂Þ
∂ v̂ = ðN−1ÞFðPv Þ

N−2ðv−ð1−βÞσ sð v̂ÞÞf ð v̂Þ

+ αðN−1ÞFðPvÞ
N−2½ð1−Fð v̂ÞÞ

dσ sð v̂Þ
d v̂

−σ sð v̂Þf ð v̂Þ%

+ ðv−ð1−βÞσ sð v̂ÞÞf ð v̂Þ∑N−1
M=2MFðPvÞ

N−1−MðFð v̂Þ−FðPvÞÞ
M−1

+ α½ð1−Fð v̂ÞÞ
dσ sð v̂Þ
d v̂

−f ð v̂Þσsð v̂Þ%∑N−1
M=2MFðPvÞ

N−1−MðFð v̂Þ−FðPvÞÞ
M−1

ð19Þ

761762
763The observation that, as a further consequence of the binomial
764theorem, ∑N−1

M=2MFðPvÞ
N−1−MðFð v̂Þ−FðPvÞÞ

M−1 = ðN−1ÞðFð v̂ÞN−2−
765FðPvÞ

N−2), and the requirement that ∂EUðv; v̂Þ= ∂ v̂ = 0 at v = v̂ in
766equilibrium allows the first order condition to be rewritten as:

0 = ðN−1ÞFðPv Þ
N−2ðv−ð1−βÞσ sðvÞÞf ðvÞ

+ αðN−1ÞFðPvÞ
N−2½ð1−FðvÞÞ dσ

sðvÞ
dv

−σ sðvÞf ðvÞ%

+ ðN−1Þðv−ð1−βÞσ sðvÞÞf ðvÞðFðvÞN−2−FðPvÞ
N−2Þ

+ αðN−1Þ½ð1−FðvÞÞdσ
sðvÞ
dv

−f ðvÞσsðvÞ%ðFðvÞN−2−Fðv ÞN−2Þ

767768or, after dividing both sides by (N−1) and collecting terms:

0 = ðv−ð1−βÞσ sðvÞÞFðvÞN−2f ðvÞ

+ αð1−FðvÞÞFðvÞN−2 dσ sðvÞ
dv

−ασ sðvÞFðvÞN−2f ðvÞ

769770which, if v≠0, so that F(v)N−2≠0, produces:

ðv−ð1−βÞσ sðvÞÞf ðvÞ + α½ð1−FðvÞÞdσ
sðvÞ
dv

−f ðvÞσ sðvÞ% = 0 ð20Þ

771772or, if v≠1 and α≠0, the first order differential equation10:

dσ sðvÞ
dv

− ð1−γÞ
α

f ðvÞ
ð1−FðvÞÞσ

sðvÞ = − 1
α

f ðvÞ
ð1−FðvÞÞ v ð21Þ

773774

10 If there is no common return – that is, if α=0 – then Eq. (20) collapses to σs(v)=
(1−γ)−1v, a variation on the standard proposition that in a second price auction with
independent private values, individuals will bid these values. In this case, individuals
bid γ(1−γ)−1 percent more than their values because it is possible, at least in
principle, that there remains a warm glow γ.
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775 Multiplication of both sides of Eq. (21) by the integrating factor

776 ð1−FðvÞÞ
1−γ
α then produces:

dðð1−FðvÞÞ
1−γ
α σsðvÞÞ

dv
= − 1

α
vf ðvÞð1−FðvÞÞ

1−β
α ð22Þ

777778 or:

ð1−FðvÞÞ
1−γ
α σsðvÞ = − 1

α
∫vf ðvÞð1−FðvÞÞ

1−β
α + k ð23Þ

779780 where k is the constant of integration.
781 The choice of boundary condition, and therefore the calculation of
782 k, is complicated for two reasons. The optimal threshold bid σsðv Þ is,
783 for reasons noted earlier, indeterminate, but the derivation of Eq. (23)
784 assumed that v≠1. The second problem can be circumvented if the

785 domain of ð1−FðvÞÞ
1−γ
α σsðvÞ is (re)extended such that ð1− Fð1ÞÞ

1−γ
α

786 σsð1Þ assumes its limit value of 0. It then follows that:

ð1−FðvÞÞ
1−γ
α σsðvÞ = 1

α
∫1
v
xf ðxÞð1−FðxÞÞ

1−β
α dx: ð24Þ

787788
789 Integration by parts then implies:

ð1−FðvÞÞ
1−γ
α σsðvÞ = 1

1−γ
ð1−FðvÞÞ

1−γ
α

v +
1

1−γ
∫1
v
ð1−FðxÞÞ

1−γ
α

dx ð25Þ

790791 or, if one assumes, once more, that v≠1, so that both sides can be

792 divided by ð1−FðvÞÞ
1−γ
α :

σsðvÞ = 1
1−γ

v +
1

ð1−γÞð1−FðvÞÞ1−γ
α
∫1
v ð1−FðxÞÞ

1−γ
α dx: ð26Þ

793794
795 The limit bids σsðPvÞ and σs(1) are then chosen so that σs(v) is
796 continuous over the entire interval ½Pv;1%.
797 It isn't difficult to infer from Eq. (26) that, conditional on
798 participation, neither the introduction of spillover effects nor
799 participation costs causes bidders to become “N sensitive.” This
800 should not come as much of a surprise, however, because Menezes
801 andMonteiro (2002)Q5 show that it is (still) dominant to bid one's value
802 in the absence of the former, while Engers and McManus (2006)Q6
803 determine that in a second price charity auction with a fixed number
804 of bidders, the optimal bid is independent of N.
805 Menezes and Monteiro (2002)Q7 also found, however, that the
806 participation thresholds for first and second price auctions were
807 equal, a result that is not robust with respect to the presence of a
808 common return. To understand the difference, consider, once
809 more, the situation faced by the “threshold bidder.” If she
810 participates, then with likelihood FðPvÞ

N−1 she alone will submit a bid,
811 and thereforewin theobjectworthv toher at a cost of 0, since there is no
812 second price. With likelihood ðN−1ÞFðPvÞ

N−2ð1−FðPvÞÞ, on the other
813 hand, there will be a second bidder, someone who will (almost
814 certainly) win at a cost of σsðPvÞ, which produces a benefit of ασsðPvÞ
815 to the threshold bidder. Last, with likelihood CN−1

M FðPvÞ
N−M−1

816 ð1−FðPvÞÞ
M , therewill beM≥2 other active bidders, andwith no chance

817 that the threshold bidder will determine the second price, the expected
818 benefits that will accrue to her are α∑N−1

M = 2 C
N−1
M FðPvÞ

N−M−1

819 ð1−FðPvÞÞ
M ∫1

Pv
jðx;MÞσsðxÞdx, where, as defined earlier, j(x,M) is the

820 conditional density of the second order statistic. The net benefits of

821participation are therefore:

FðPvÞ
N−1

Pv + αðN−1ÞFðPvÞ
N−2ð1−FðPv ÞÞσ

sðPvÞ

+ α∑N−1
M = 2 C

N−1
M FðPvÞ

N−M−1ð1−FðPvÞÞ
M∫1

v̂
jðx;MÞσsðxÞdx−cs

ð27Þ

822823
824If, on the other hand, the threshold bidder does not participate, she
825receives 0 with likelihood FðPvÞ

N−1 + ðN−1ÞFðPvÞ
N−2ð1−FðPvÞÞ, the

826likelihood that one or fewer bids are submitted, since there are no
827revenue proportional benefits in this case, andα∫1

Pv
jðx;MÞσsðxÞdxwith

828likelihood CN−1
M FðPvÞ

N−M−1ð1−FðPvÞÞ
M for M≥2. The net benefits of

829non-participation are therefore:

α∑N−1
M = 2 C

N−1
M FðPvÞ

N−M−1ð1−FðPvÞÞ
M∫1

Pv
jðx;MÞσsðxÞdx

830831
832The condition that defines the threshold Pv is therefore:

FðPvÞ
N−1

Pv + αðN−1ÞFðPvÞ
N−2ð1−FðPvÞÞσ

sðPvÞ = cs ð28Þ

833834the solution of which will be denotedPv
s = Pv

sðN; cs;αÞ. Relative to the
835first price threshold in Eq. (11), two related properties of Pv

sðN; cs;αÞ
836call for attention. First, the threshold is now sensitive to the common
837return α and warm glow γ=β−α associated with the charity.
838Second, when participation costs are the same, c f=cs, the threshold is
839lower or, if one prefers, participation rates are higher, in the second
840price auction. A comparison of the two conditions in Eqs. (11) and
841(28) reveals that the difference is the term αðN−1ÞFðPvÞ

N−2

842ð1−FðPvÞÞσsðPvÞ, the benefit that accrues to a threshold bidder in
843second price auction when there is just one other bidder, and she
844determines the winner's payment.
845Expected revenues in the second price auction Rs are therefore:

Rs = NðN−1Þ∫1
Pv
sðN;cs ;α;βÞ FðxÞ

N−2 1−FðxÞð Þf ðxÞσ sðxÞdx

=
NðN−1Þ
1−γ

!
∫1
Pv
sðN;cs ;α;βÞ FðxÞ

N−2 1−FðxÞð Þf ðxÞxdx

+ ∫1
Pv
sðN;cs ;α;βÞ FðxÞ

N−2 1−FðxÞð Þ∫1
x
1−FðzÞð Þ

1−γ
α dzdxÞ

"
ð29Þ

846847where N(N−1)F(v)N−2(1−F(v))f(v) is the unconditional density
848function of the second order statistic and the second line follows from
849substitution for σs(x).

8503. All-pay sealed bid auction

851The derivation of the SBNE bid functions under the all-pay
852mechanism follows now familiar lines. With likelihood FðPvÞ

N−1, the
853representative bidder will have no active rivals, and can expect
854ðv−ð1−βÞσað v̂ÞÞ. With likelihood CN−1

M FðPvÞ
N−1−Mð1−FðPvÞÞ

M , she will
855have M≥1 rivals, and expect:

EU v̂; v;Mð Þ = ∫v̂
Pv
vgðx;MÞdx +

αM
1−FðPvÞ
# $∫1

Pv
f ðxÞσaðxÞdx−ð1−βÞσa v̂ð Þ

=
Fð v̂Þ−FðPvÞ
# $M

1−FðPvÞ
# $M v +

αM
1−FðPvÞ
# $∫1

Pv
f ðxÞσaðxÞdx−ð1−βÞσa v̂ð Þ:

ð30Þ

856857
858The first term reflects the fact that she will win the auction, and
859receive her private value v, with likelihood Gð v̂;MÞ. The second and
860third follow from the observation that, win or lose, she will forfeit the
861net cost of her bid, ð1−βÞσað v̂Þ, but obtain benefits equal to a fraction
862α of the sum of all other bids, expressed here as the product of the

863number of active bidders M and the mean bid ∫1

Pv
f ðxÞ

ð1−FðPvÞÞ
σaðxÞdx.

864Substitution for g(x,M) in the first term and 6integration then leads to
865the second line.
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866 After some simplification, the unconditional payoff EUðv; v̂Þ for a
867 bidder who assumes type v̂ is therefore:

EUðv; v̂Þ = Fð&vÞ
N−1ðv−ð1−βÞσ að v̂ÞÞ

+ v∑N−1
M=1 C

N−1
M FðPvÞ

N−1−MðFð v̂Þ−FðPvÞÞ
M

+
α

ð1−FðPvÞÞ
∫1
Pv
σaðxÞf ðxÞdx∑N−1

M=1 C
N−1
M MFðPvÞ

N−1−Mð1−FðPvÞÞ
M

−ð1−βÞσað v̂Þ∑N−1
M=1 C

N−1
M FðPvÞ

N−1−Mð1−FðPvÞÞ
M

ð31Þ

868869 or recalling that∑N−1
M=1 C

N−1
M FðPvÞ

N−1−Mð1−FðPvÞÞ
M = 1−FðPvÞ

N−1 and

870 ∑N−1
M=1 C

N−1
M MFðPvÞ

N−1−Mð1−FðPvÞÞ
M = ðN−1Þð1−FðPvÞÞ; and thennot-

871 ing that∑N−1
M=1 C

N−1
M FðPvÞ

N−1−MðFðv̂Þ−FðPvÞÞ
M = Fðv̂ÞN−1− FðPvÞ

N−1:

EUðv; v̂Þ = FðPvÞ
N−1ðv−ð1−βÞσað v̂ÞÞ + vðFð v̂ÞN−1−FðPvÞ

N−1Þ

+ αðN−1Þ∫1
Pv
σaðxÞf ðxÞdx−ð1−βÞð1−FðPvÞ

N−1Þσ að v̂Þ

= Fð v̂ÞN−1v + αðN−1Þ∫1
Pv
σ aðxÞf ðxÞdx−ð1−βÞσað v̂Þ

ð32Þ

872873
874 The derivative of EUðv; v̂Þ with respect to v̂ is therefore just

875 vðN−1ÞFð v̂ÞN−2f ð v̂Þ−ð1−βÞdσ
að v̂Þ
d v̂

, which equals zero at v̂ = v if:

dσaðvÞ
dv

=
N−1
1−β

FðvÞN−2f ðvÞv ð33Þ876877

878 The solution to this differential equation:

σaðvÞ = N−1
1−β

∫FðvÞN−2f ðvÞv + k ð34Þ

879880 where k is a constant of integration. Since it is optimal for bidders with
881 threshold values to bid zero, σaðPvÞ = 0, this becomes:

σaðvÞ = N−1
1−β

∫v

Pv
FðxÞN−2f ðxÞxdx ð35Þ

882883 or, after integration by parts:

σaðvÞ = 1
1−β

vFðvÞN−1−PvFðPvÞ
N−1

! "
− 1

1−β
∫v

Pv
FðxÞN−1dx: ð36Þ

884885
886 If the costs of participation in first price and all-pay auctions are
887 the same, then so, too, are the participation thresholds.11 To show this,
888 recall that with likelihood FðPvÞ

N−1, the threshold bidder will be the
889 lone participant, and win a prize worth Pv to her for a bid of 0. With
890 likelihood CN−1

M FðPvÞ
N−1−Mð1−FðPvÞÞ

M , there will be M≥1 other

891bidders, each of whom will submit, in expectation, a bid equal to
892∫1

Pv
σaðxÞf ðxÞdx, which produces a benefit equal to αM∫1

Pv
σaðxÞf ðxÞdx

893for the threshold bidder. The net benefits of participation are
894therefore:

FðPvÞ
N−1

Pv + α∑N−1
M=1 C

N−1
M FðPvÞ

N−1−Mð1−FðPvÞÞ
MM∫1

Pv
σaðxÞf ðxÞdx−ca

ð37Þ
895896
897The net benefits of non-participation, on the other hand, are:

α∑N−1
M=1 C

N−1
M FðPvÞ

N−1−Mð1−FðPvÞÞ
MM∫1

Pv
σaðxÞf ðxÞdx ð38Þ

898899since, with likelihood CN−1
M FðPvÞ

N−1−Mð1−FðPvÞÞ
M , there will be M≥1

900other bidders who produce the same non-exclusive benefit of
901αM∫1

Pv
σaðxÞf ðxÞdx. The threshold is therefore defined by:

FðPvÞ
N−1

Pv = ca ð39Þ

902903the solution of which is denoted Pv
a = Pv

aðN; caÞ
904The same demonstration also shows that expected revenues under
905the all-pay mechanism are equal to:

Ra = N∫1

Pv
aðN;caÞσ

aðvÞf ðvÞdv: ð40Þ
906907
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