
Math 302 - Solutions to Exam 1

1. Suppose G is a group that has exactly eight elements of order 3. How many sub-
groups of order 3 does G have?

Solution: Let a be one of the elements of order three in G. Then < a >= {a, a2, e}
is one subgroup of order three. Note that |a2| = 3, so we’ve now taken account of
two of the eight. In this manner we can see that G has 4 subgroups of order 3.

2. An Abelian group of order 6 must be cyclic.

Proof: Let G be an Abelian group of order 6, and let a ∈ G. Note that |a| ≤ 6
(otherwise G would get too big.

• If |a| = 6, then G =< a >, and we’re done.

• If |a| = 5, then there is a nonidentity element b ∈ G, b /∈< a >. But then
e, a, a2, a3, a4, b, ab, a2b, a3b, and a4b are all distinct elements of G, contradicting
|G| = 6. So a cannot have order 5.

• If |a| = 4, we reach a similar contradiction, so a cannot have order 4.

• if |a| = 3, then there is a nonidentity element b ∈ G, b /∈< a >. If |b| > 2,
then again we get too many distinct elements in G (e, a, a2, b, ab, a2b, b2, ...), so
it must be the case that |b| = 2; i.e., b2 = e. We get
< ab >= {ab, a2b2 = a2, a3b = b, ab2 = a, a2b, a3b2 = e}, with six distinct
elements, so G is cyclic.

• Finally, if |a| = 2, then choose a nonidentity element b 6= a. If |b| = 2, then if we
try to build G we have, so far, {e, a, b, ab}, which is a subgroup, so there must
be an element c, of order at least two, not in that subgroup. But then closure
would force us to have at least 8 distinct elements (e, a, b, ab, c, ac, bc, abc, ...),
again too big. If |b| > 3, again the group gets too big. If |b| = 3, then |ab| = 6,
and G must be cyclic.

3. The group Z5
∗×Z2 is not cyclic, as no single element can generate the whole group.

4. Let G be a group and let H be a subgroup of G. Define N(H) =
{x ∈ G|xHx−1 = H}. Claim: N(H) (the normalizer of H) is a subgroup of G.

Proof: We’ll use the two-step subgroup test.
(i) Let x, y ∈ N(H). Then xHx−1 = H and yHy−1 = H. (NOTE: these equalities
are about sets. We can conclude that, for any element h in H, xhx−1 is also an
element of H, but it is not necessarily equal to h.) Taking the second equation and
multiplying on the left by x and on the right by x−1, we have
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xyHy−1x−1 = xHx−1. Using the first equation, and noting that (xy)−1 = y−1x−1,
we have xyH(xy)−1 = H, and hence xy ∈ N(H).

(ii) Let x ∈ N(H).Then xHx−1 = H. Multiplying on the left by x−1 and on the
right by x, we see
H = x−1Hx = x−1H(x−1)−1. Therefore x−1 ∈ N(H).

Thus N(H) is a subgroup of G.

5. Let G be a group, and let S be a nonempty subset of G. The set < S > is a subgroup
of G.

Proof: We apply the two-step subgroup test.

(a) Let a, b ∈< S >. By definition, a and b are finite products of elements of S and
their inverses, and hence ab is such a finite product. Since < S > contains all
possible such products, ab ∈< S >.

(b) For any a ∈< S >, a = a1a2...ak, where the ai are elements S or inverses of
elements of S. Now a−1 = a−1

k ...a−1
2 a−1

1 , also a product of elements of S or their
inverses, and hence a−1 ∈< S >.

6. Find two elements of D4 (the group of symmetries of the square) that generate the
whole group. Then do the same for H, the group defined in Problem 7 of Problem
Set 3.

Solution: The set {ρ1, δ1} will generate D4. (This solution is not unique.)
The set {I, J} will generate H. (Again, this solution is not unique.).

7. The set M = {
[

cos θ − sin θ
sin θ cos θ

]
: θ ∈ R} is a subgroup of SL2(R).

Proof: Let A,B ∈M . Then A =

[
cosα − sinα
sinα cosα

]
and B =

[
cosβ − sinβ
sinβ cosβ

]
for

some α, β ∈ R. Hence AB =

[
cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
sinα cosβ + cosα sinβ − sinα sinβ + cosα cosβ

]
.

Using trigonometric identities, we see that AB =

[
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

]
.

Because α+ β is a real number, we see that AB ∈M , and hence M is closed under
the operation of SL2(R).

Also, withA as above, note thatA−1 =

[
cosα sinα
− sinα cosα

]
=

[
cos(−α) − sin(−α)
sin(−α) cos(−α)

]
,
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and thus A−1 ∈M .
Therefore, by the two-step subgroup test, M is a subgroup of SL2(R)..

8. Let E =

[
1 0
0 1

]
, R =

[
0 −1
1 0

]
, and D =

[
0 1
1 0

]
. Show that the set

C = {E,R,R2, R3, D,RD,R2D,R3D} is a subgroup of GL2(R}. Then compare it
to other groups of order eight that you’ve seen. What do you notice?

Solution: We construct the multiplication table for this set:

E R R2 R3 D RD R2D R3D

E E R R2 R3 D RD R2D R3D
R R R2 R3 E RD R2D R3D D
R2 R2 R3 E R R2D R3D D RD
R3 R3 E R R2 R3D D RD R2D
D D R3D R2D RD E R3 R2 R
RD RD D R3D R2D R E R3 R2

R2D R2D RD D R3D R2 R E R3

R3D R3D R2D RD D R3 R2 R E

Note that the set is closed under matrix multiplication, and that E, the identity
matrix, appears in every row and column, so the set is also closed under taking
inverses. Therefore it is a subgroup of GL2(R}.
This group, unlike Z8 under addition or the group in problem 3, is not abelian. Like
both D4 and the group H from Problem Set 3, this group can be generated with two
elements (in this case, D and R). Upon closer inspection, we notice that this group
is more like D4, because it has six five elements of order two.
In fact, if we regard each of these matrices as representing a linear transformation of
R2, notice that R represents a 90-degree rotation around the origin, and D represents
a reflection across the line y = x. (Compute R~v and D~v for a few vectors to see this
in action.) So the connection of C with D4 is quite close; they’re the same group, in
some sense.
While we’re on the subject of linear transformations of R2, the matrices in problem
7 represent all of the rotations around the origin (but no reflections).
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