Abstract Algebra - Worksheet 5

Some notational conventions:

- From now on, "the group \mathbb{Z}_{n} " will be taken to mean the set $\{0,1,2 \ldots n-1\}$ with operation addition $\bmod n$.
- For groups such as \mathbb{Z}_{n}, where it is natural to use additive notation, we replace our multiplicative expressions by the additive analogues, as follows:
- for n an integer, in place of a^{n} write $n a$
- in place of a^{-1} write $-a$
- write " 0 " for the identity.

1. A subgroup H of a group G is a nonempty subset of G which is itself a group under the operation of G. Find a nontrivial (i.e. not the whole group or just the identity) subgroup for each of the following, and show that your subset really is a subgroup:
(a) The set \mathbb{Z} of integers under addition.
(b) The set D_{4} of symmetries of the square.
2. You may have noticed in the previous problem that a subset of a known group inherits certain group properties automatically. To make the process more efficient, prove the Two-Step Subgroup Test: Let G be a group and H a nonempty subset of G. Then H is a subgroup of G if
(i) for any a and b in $H, a b$ is in H, AND
(ii) for any a in H, a^{-1} is in H.
(So your work is to show that given (i) and (ii), H is closed under the operation of G and the three axioms in the definition of a group hold for H.)
3. Prove that the set $\{1,2, \ldots, n-1\}$ is a group under multiplication modulo n if and only if n is prime.

Definition.

(i) The order of a group G, denoted $|G|$, is the number of elements in G (finite or infinite).
(ii) The order of an element g in a group G is the smallest positive integer n such that $g^{n}=e$. (In an additive group, this would be $n g=0$, where $n g$ means $g+g+\ldots+g$ with n terms.) If no such integer n exists, we say that g has infinite order. The order of an element g is denoted $|g|$.
4. Find the order of each of the following groups as well as the order of each element in the group: $\mathbb{Z}_{5}, \mathbb{Z}_{6}, D_{3}, D_{4}$.

