Abstract Algebra – Worksheet 2

Notational conventions:

- \mathbb{N} : The set of natural numbers: $\{1, 2, 3...\}$
- \mathbb{Z} : The set of integers: {... 2, -1, 0, 1, 2...}
- \mathbb{Q} : The set of rational numbers: $\{\frac{n}{m} | n, m \in \mathbb{Z}, m \neq 0\}$
- \mathbb{R} : The set of real numbers.
- \mathbb{C} : The set of complex numbers: $\{a + bi \mid a, b \in \mathbb{R}\}$ where $i = \sqrt{-1}$.

Definition: A binary operation * on a set A is a function which sends $A \times A$ to A. We denote the image of (x, y) under this function by x * y.

- 1. (ex) Which of the following are binary operations on the specified set? If not, explain why not.
 - (a) Addition on \mathbb{Z} .
 - (b) Subtraction on \mathbb{N} .
 - (c) Division on \mathbb{R} .
 - (d) Division on $\mathbb{Z} \setminus \{0\}$.
 - (e) Composition on D_4 .
 - (f) Composition on the set of rotations in D_4 .
 - (g) Multiplication mod 6 on \mathbb{Z}_6 .

Definitions:

• A binary operation * on a set A is said to be *associative* if

(a * b) * c = a * (b * c) for all a, b and c in A.

• A binary operation * on A is said to be *commutative* if a * b = b * a for all a and b in A.

• Suppose * is a binary operation on A. An element e of A is said to be an *identity* for * if a * e = e * a = a for all $a \in A$.

• Suppose * is a binary operation on A, with identity element e. Let $a \in A$. An element b of A is said to be an *inverse* of a with respect to * if a * b = b * a = e.

- 2. (ex) Refer back to those operations in question 1 that *were* binary operations. Do the following for each of these binary operations.
 - (a) Determine whether the operation is associative, and if not, prove that the operation is not associative.
 - (b) State whether there is an identity for the operation, and if so, identify it.
 - (c) If there is an identity for the operation, determine which elements (if any) have inverses.

- 3. (ex) Determine which of the binary operations in question 1 are commutative, and if not, provide proof that the operation is not commutative.
- 4. Prove that if a binary operation * on a set A has an identity element, then that identity element is unique.

Definition: A group is a set G together with a binary operation * on G satisfying the following:

- (a) The operation * is associative.
- (b) There is an element in G which is an identity for *.
- (c) Every element in G has an inverse with respect to * in G.

We denote the group by $\langle G, * \rangle$.

We refer to the set G as the *underlying set* of the group $\langle G, * \rangle$. (However if the specific operation is clear from the context, or is not important in the context, we sometimes simply write G instead of $\langle G, * \rangle$ for the group, and speak of "the group G".)

Note that we assume all the familiar properties of the operations on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} , and you may use these freely in all that follows.

- 5. (ex) Which of the following are groups? If not, explain why not.
 - (a) $\langle \mathbb{Z}, + \rangle$
 - (b) $\langle \mathbb{Z}, \rangle$
 - (c) $\langle \mathbb{Z}, \times \rangle$
 - (d) $\langle \mathbb{Z}, \div \rangle$
 - (e) $\langle \mathbb{R}^+, \times \rangle$ (\mathbb{R}^+ denotes the set of positive real numbers.)
 - (f) The set of symmetries of a regular pentagon with operation composition.
 - (g) \mathbb{Z}_6 with operation addition mod 6.
 - (h) \mathbb{Z}_6 with operation multiplication mod 6.
 - (i) $\mathbb{Z}_6 \setminus \{0\}$ with operation multiplication mod 6.
 - (j) $\mathbb{Z}_5 \setminus \{0\}$ with operation multiplication mod 5.
- 6. Prove that the following is, or is not a group, as appropriate.

The set $S = \mathbb{R} \setminus \{1\}$ with operation defined by a * b = a + b - ab for all a and b in S. (On the right side of the equation, the operations are the usual addition and multiplication in \mathbb{R} .)

7. Prove that the following is, or is not a group, as appropriate. The set $M_2(\mathbb{R})$ of all 2 by 2 matrices, with real numbers as entries, and operation matrix multiplication.