Math 302 - Permutations Interlude

Recall that S_{n} is the group of permutations of the set $\{1,2,3, \ldots, n\}$. The operation is function composition. Note that S_{n} is called the symmetric group of degree n.

1. Write the permutation $\alpha=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 1 & 5 & 2\end{array}\right]$ as a product of disjoint cycles.
2. What is the order of the permutation $\left(a_{1} a_{2} \ldots a_{k}\right)$?
3. Write each of the following permutations as a product of disjoint cycles:
a) $(1235)(413)$
b) $(413)(1235)$
c) $(13256)(23)(46512)$
d) $(12)(13)(14)(15)$
4. What is the order of each of the following permutations?
a) $(124)(357)$
b) $(124)(3567)$
c) $(124)(357869)$
d) $\left(a_{1} a_{2} \ldots a_{j}\right)\left(b_{1} b_{2} \ldots b_{k}\right)$, where all of the a 's and b 's are distinct.
5. Write the permutation (1357246) as a product of two-cycles (also known as transpositions). Then write it as a different product of transpositions.
6. Prove: If a permutation α can be expressed as a product of an even number of transpositions, then every decomposition of α into a product of transpositions must have an even number of them.
7. You've just shown that it makes sense to define an even permutation as one that can be expressed as a product of an even number of transpositions. Prove that the set of even permutations in S_{n} forms a subgroup of S_{n}. NOTE: This subgroup is called the alternating group of degree n, denoted A_{n}.
