Math 302 - Abstract Algebra

Problem Set 9
Due Thursday, May 5

Definition. A ring R is a set with two binary operations, addition and multiplication (denoted as you'd expect) such that for all $a, b, c \in R$,

1. $a+b=b+a$
2. $(a+b)+c=a+(b+c)$
3. There is an additive identity 0 .
4. There is an element $-a \in R$ such that $a+(-a)=0$.
5. $a(b c)=(a b) c$.
6. $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$.

Examples

- The set \mathbb{Z} of integers under ordinary addition and multiplication.
- The set $2 \mathbb{Z}$ of even integers under ordinary addition and multiplication.
- The set $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ under addition and multiplication modulo n.
- The set \mathbb{R} of real numbers under ordinary addition and multiplication.
- The set $M_{2}(\mathbb{Z})$ of 2×2 matrices with integer entries.
- The set $M_{2}(\mathbb{R})$ of 2×2 matrices with real number entries.

Exercises:

1. (a) A ring is commutative if its multiplication is a commutative operation. Which of the above rings is commutative?
(b) Which of the above rings have multiplicative identities? (A multiplicative identity is called a unity of the ring.)
(c) A nonzero element of a ring with unity is called a unit if it has a multiplicative inverse. Describe the units in each of the rings with identity.
2. Let R be a ring, and let $a, b, c \in R$. Prove that
(a) $a 0=0 a=0$.
(b) $a(-b)=(-a) b=-(a b)$.
(c) $(-a)(-b)=a b$.
3. Show, by example, that for fixed nonzero elements a and b in a ring R, the equation $a x=b$ can have more than one solution.
4. Let R be a commutative ring with unity, and let $U(R)$ be the set of units of R. Prove that $U(R)$ is a group under the multiplication of R.
5. The set of Gaussian Integers is $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$; it is a ring under ordinary addition and multiplication of complex numbers. Find $U(\mathbb{Z}[i])$.
6. A subset S of a ring R is a subring of R if S is itself a ring with the operations of R. Describe the subrings of \mathbb{Z}.
7. Show that a ring that is cyclic under addition is commutative.
8. Let R be a ring. Prove that $a^{2}-b^{2}=(a+b)(a-b)$ for all $a, b \in R$ if and only if R is commutative.
