Math 302 - Abstract Algebra

Problem Set 3
Due Thursday, March 10

Definition: Let G be a group, and let H be a subset of G. We say that H is a subgroup of G if H is a group in its own right under the operation of G.

1. Determine all of the subgroups of \mathbb{Z}_{12} under addition modulo 12. Justify your answer.
2. Let n be a natural number. Make a conjecture by finishing this sentence: All of the subgroups of \mathbb{Z}_{n} are of the form ...
3. Prove that the set \mathbb{R}^{2} is a group under vector addition.
4. Find a subgroup of \mathbb{R}^{2}. Then find another.
5. Let $G=\left\{2^{n} \mid n \in \mathbb{Z}\right\}$. Show that G is a subgroup of \mathbb{R}^{*}, the nonzero real numbers under multiplication.
6. We've seen that $G L_{2}(\mathbb{R})$, the set of 2×2 matrices with entries from \mathbb{R} and nonzero determinants, forms a group under matrix multiplication. Prove that $S L_{2}(\mathbb{R})=\left\{M \in G L_{2}(\mathbb{R}) \mid \operatorname{det}(M)=1\right\}$ is a subgroup of $G L_{2}(\mathbb{R})$.
NOTE: Recall that for two square matrices A and B of the same size, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
7. We can form matrices with entries from \mathbb{C} and use the familiar matrix operations.

Let $E=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], I=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], J=\left[\begin{array}{cc}0 & i \\ i & 0\end{array}\right]$, and $K=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$.
Show that the set $H=\{ \pm E, \pm I, \pm J, \pm K\}$ is a group under matrix multiplication by making its multiplication table and explaining how the axioms hold. (You may assume associativity.) Is this group abelian?
8. Find all of the subgroups of H (from the above problem).

