Math 302 - Abstract Algebra
Problem Set 2
Due Thursday, March 3

1. Prove that the set $T=\{z \in \mathbb{C}:|z|=1\}$ is a group under multiplication. (You may take as given that multiplication in the complex numbers is associative.)
2. Referring to Problem 1 above, notice that in the complex plane, T is the circle of radius 1 centered at the origin. For $z \in T$, define the argument of z, written $\arg (z)$, to be the angle θ (in radians), $0 \leq \theta<2 \pi$, such that $z=\cos \theta+i \sin \theta$. So, for example, $\arg (i)=\pi / 2$. Prove that for $z, w \in T, \arg (z w)=\arg (z)+\arg (w)$.
NOTE: you may use these trigonometric identities:

- $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
- $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$

3. Prove that the set $U=\left\{z \in \mathbb{C}: z^{6}=1\right\}$ is a group. Then list the elements of U in standard form (that is, the form $a+b i$, where a and b are real numbers), and plot them in the plane.
4. Let D_{n} denote the group of symmetries of a regular n-sided polygon, where $n>2$ is an integer, and ρ_{0} is the identity element. (D_{n} is called a dihedral group.) Suppose that μ_{1} and μ_{2} are distinct reflections in D_{n}. Prove that $\mu_{1} \mu_{2} \neq \rho_{0}$.
5. Give an example of a group G and elements a and b in G such that $a^{-1} b a \neq b$.
6. Show that the set $\{5,15,25,35\}$ is a group under multiplication modulo 40. What is the identity element of this group?
7. Prove that every group table is a Latin Square; that is, each element of the group appears exactly once in each row and in each column. (This is what we've been calling the Sudoku Property.) NOTE: An infinite group has a group table that extends down and to the right forever; be sure to cover the infinite case in your proof.
8. Prove that if G is a group with the property that the square of every element is the identity, then G is abelian.
