Math 302 - Abstract Algebra

Problem Set 1
Due Thursday, February 25

1. Consider an infinitely long strip of equally spaced H's:
... H H H H H ...
Describe the symmetries of this strip. Is the composition operation commutative?
Explain.
2. Recall from Worksheet 2 that the set of complex numbers \mathbb{C} is $\{a+b i \mid a, b \in \mathbb{R}\}$ where $i=\sqrt{-1}$.
(a) Show that \mathbb{C} is closed under addition; that is, show that the sum of two complex numbers is also a complex number. What is the additive identity in \mathbb{C} ?
(b) Show that \mathbb{C} is closed under multiplication. What is the multiplicative identity in \mathbb{C} ?
(c) Let $z=a+b i$ be any complex number. The modulus of z is the real number $|z|=\sqrt{a^{2}+b^{2}}$. (Note that this is a different use of the word "modulus" than the number-theoretic one; context is important.) Show that for any two complex numbers z and $w,|z w|=|z||w|$.
(d) Given a nonzero complex number $z=a+b i$, find its multiplicative inverse and write it the form $\alpha+\beta i$, where α and β are real numbers (in terms of a and b).
(e) By establishing a correspondence between the complex number $z=a+b i$ and the ordered pair (a, b), we describe the complex plane in order to visualize \mathbb{C}. Notice that in this setup, $|z|$ is the length of the vector from the origin to (a, b). What is the relationship in the plane between a nonzero complex number z and its multiplicative inverse? (Try several examples.)
3. Using the First Principle of Mathematical Induction, prove that for any natural number $n, 1+3+5+\ldots+(2 n-1)=n^{2}$. That is,
(i) Show that the equation is true when $n=1$, and
(ii) Assume that the equation is true when $n=k$, and show that the equation is true for $n=k+1$.
4. For any positive integer n, prove that $2^{n} 3^{2 n}-1$ is always divisible by 17 .
5. Let $A=1,2,3, \ldots, 10,11$, and make a multiplication table modulo 12 . Find a set U contained in A such that a multiplication table modulo 12 using only the elements in U has what we've been calling the "Sudoku Property." (So in the body of your new smaller table, every element of U shows up exactly once in each row and column.) How would you describe the elements of U ? (If you've had Number Theory, use language that a classmate who hasn't had that course would understand.)
