Math 302 Worksheet 9

- 1. a) List all of the distinct subgroups of \mathbb{Z}_{12} , and identify all of the generators for each.
 - b) Do the same for \mathbb{Z}_{18} .
- 2. a) Let G be a cyclic group of order 12, with generator a. List all of the distinct subgroups of G.
 - b) Do the same for a cyclic group H of order 18, with generator b.

The Fundamental Theorem of Cyclic Groups Every subgroup of a cyclic group is cyclic. Moreover, if | < a > | = n, then the order of any subgroup of < a > is a divisor of n; and, for each positive divisor k of n, the group < a > has exactly one subgroup of order k, namely $< a^{\frac{n}{k}} >$.

We've already proven the first part; the rest of the proof is deferred.

- 3. Find an example of a noncyclic group, all of whose subgroups are cyclic.
- 4. Find a collection of distinct subgroups $\langle a_1 \rangle, \langle a_2 \rangle, ..., \langle a_n \rangle$ of \mathbb{Z}_{240} with the property that $\langle a_1 \rangle \subset \langle a_2 \rangle \subset ... \subset \langle a_n \rangle$ with n as large as possible.
- 5. Let m and n be elements of the (additive) group \mathbb{Z} . Find a generator for the group $\langle m \rangle \bigcap \langle n \rangle$.
- 6. Is every subgroup of \mathbb{Z} cyclic? Why? Let $a \in \mathbb{Z}$. Describe all subgroups of $\langle a \rangle$.