Math 302 Worksheet 9

1. a) List all of the distinct subgroups of \mathbb{Z}_{12}, and identify all of the generators for each.
b) Do the same for \mathbb{Z}_{18}.
2. a) Let G be a cyclic group of order 12 , with generator a. List all of the distinct subgroups of G.
b) Do the same for a cyclic group H of order 18 , with generator b.

The Fundamental Theorem of Cyclic Groups Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a\rangle|=n$, then the order of any subgroup of $\langle a\rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a\rangle$ has exactly one subgroup of order k, namely $\left\langle a^{\frac{n}{k}}\right\rangle$.

We've already proven the first part; the rest of the proof is deferred.
3. Find an example of a noncyclic group, all of whose subgroups are cyclic.
4. Find a collection of distinct subgroups $\left.\left.\left\langle a_{1}\right\rangle,<a_{2}\right\rangle, \ldots,<a_{n}\right\rangle$ of \mathbb{Z}_{240} with the property that $<a_{1}>\subset<a_{2}>\subset \ldots \subset<a_{n}>$ with n as large as possible.
5. Let m and n be elements of the (additive) group \mathbb{Z}. Find a generator for the group $<m>\bigcap<n>$.
6. Is every subgroup of \mathbb{Z} cyclic? Why? Let $a \in \mathbb{Z}$. Describe all subgroups of $\langle a\rangle$.

