Abstract Algebra - Worksheet 8

Here is a theorem of elementary number theory, which we have been using, and will continue to use, without proof:

The division algorithm. Suppose n and m are integers, with $m>0$. Then there exist unique integers q and r with $n=m q+r$, and $0 \leq r<m$.

1. Suppose that G is a group, and $a \in G$. Prove that if the order of a is m, then for all integers q and $r, a^{m q+r}=a^{r}$.
2. Prove that every cyclic group is abelian.
3. Prove that if $G \times H$ is a cyclic group, then G and H are cyclic groups.
4. Prove or disprove, as appropriate: If G and H are cyclic groups, then $G \times H$ is a cyclic group.
5. Suppose H is a subgroup of a group G with $a \in G$. Suppose n, m, q and r are integers with $n=m q+r$. Prove that if a^{n} and a^{m} are both in H, then so is a^{r}.

The following is usually taken as an axiom when working with non-negative integers, and we will do the same:

Well-ordering principle: Every non-empty set of positive integers contains a least element.
6. Suppose that G is a cyclic group, with generator a. Prove that if H is a subgroup of G then H is cyclic.
7. Suppose n and m are integers. Let $H=\{s m+t n \mid s \in \mathbb{Z}$ and $t \in \mathbb{Z}\}$. Prove that H is a cyclic subgroup of \mathbb{Z}.
8. Suppose n and m are integers. In the previous problem we showed that $H=\{s m+t n \mid s \in \mathbb{Z}$ and $t \in \mathbb{Z}\}$ is a cyclic subgroup of \mathbb{Z}. Prove that if d is a generator of H, then $d=\operatorname{gcd}(m, n)$.
9. Suppose n and m are integers, with $d=\operatorname{gcd}(m, n)$. Prove that there exist integers s and t with $s m+t n=d$.

