Abstract Algebra - Worksheet 7

Definition. A group G is cyclic if $G = \langle a \rangle$ for some $a \in G$. In this case, a is called a *generator* of G.

- 1. Show that \mathbb{Z}_n (under addition) is cyclic for any positive integer n.
- 2. Let G be a group, and let $a \in G$. Prove that if a has (finite) order n, then
 - a) $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\},$ and
 - b) $a^i = a^j$ if and only if n divides i j.

(So we now have a connection between the two uses of the word "order" in group theory.)

- 3. Find all generators of \mathbb{Z}_6 , \mathbb{Z}_8 , and \mathbb{Z}_{20} . What do you notice about the generators?
- 4. Suppose that $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ are cyclic groups of orders 6, 8, and 20 respectively. Find all generators of each of these groups.
- 5. Let G be a group, and let a be an element of order n in G. Prove that if $a^k = e$, then n divides k.