Math 302 Worksheet 14

- 1. Prove that a factor group of a cyclic group is cyclic.
- 2. Is a factor group of an Abelian group necessarily Abelian? Prove or find a counterexample.
- 3. **Definition.** A homomorphism φ from a group G to a group \overline{G} is a mapping from G into \overline{G} that preserves the group operation; that is, $\varphi(ab) = \varphi(A)\varphi(b)$ for all $a, b \in G$.
 - a) Show that the mapping $A \to det(A)$ is a homomorphism from $GL(2,\mathbb{R})$ to \mathbb{R}^* .
 - b) Find a homomorphism $\varphi: S_n \to \mathbb{Z}_2$.
- 4. **Definition.** The *kernel* of a homomorphism φ is the set $Ker\varphi = \{g \in G | \varphi(g) = e\}$. Find the kernel of each of the homomorphisms in exercise 5.
- 5. Prove that if φ is a homomorphism from G to \overline{G} , then $Ker\varphi$ is a subgroup of G.
- 6. What is the kernel of an isomorphism?