Math 302 Worksheet 12

Definition Let G be a group, let H be a subgroup of G, and let a be any element of G. Then the set $aH = \{ah | h \in H\}$ is the *left coset of* H in G containing a.

- 1. Let $G = D_4$, and let $K = \{\rho_0, \rho_2\}$. Compute all of the left cosets of K. What do you notice?
- 2. Do the same for $G = A_4$ and $H = \{(1), (12)(34), (13)(24), (14)(23)\}.$
- 3. Prove the following properties of cosets, where G is a group, H is a subgroup of G, and $a, b \in G$:
 - a) $a \in aH$;
 - b) aH = H if and only if $a \in H$;
 - c) aH = bH if and only if $a \in bH$;
 - d) aH = bH or $aH \bigcap bH = \emptyset$.
- 4. Prove Lagrange's Theorem: If G is a finite group and H is a subgroup of G, then |H| divides |G|.
- 5. Prove the **Corollary**: In a finite group, the order of each element of the group divides the order of the group.