Math 302 Worksheet 10

You may have noticed a pair of groups which seem to be structurally the same, even if they aren't identical.

Definition. An isomorphism ϕ from a group G to a group \bar{G} is a one-to-one mapping from G onto \bar{G} that preserves the group operation, meaning that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$.

If there is an isomorphism from G onto \bar{G} , we say that G and \bar{G} are isomorphic and write $G \approx \bar{G}$.

- 1. Let G be a cyclic group of order 12 with generator a. Prove that G is isomorphic to \mathbb{Z}_{12} . To do this,
 - a) Define a function from G to \mathbb{Z}_{12} .
 - b) Prove that ϕ is one-to-one by assuming that $\phi(a) = \phi(b)$ and proving that a = b.
 - c) Prove that ϕ is onto; that is, for any $\bar{g} \in \mathbb{Z}_{12}$, find an element $g \in G$ such that $\phi(g) = \bar{g}$.
 - d) Prove that ϕ is operation-preserving; that is, show that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$.
- 2. Find an isomorphism from the group of integers under addition to the group of even integers under addition.
- 3. Show that U(8) is isomorphic to U(12). Is U(8) isomorphic to U(10)? If not, find a group that is isomorphic to U(10).
- 4. Let ϕ be an isomorphism from a group G to a group \overline{G} . Prove
 - a) ϕ carries the identity of G to the identity of \overline{G} .
 - b) For every integer n and for every group element a in G, $\phi(a^n) = [\phi(a)]^n$.
 - c) $|a| = |\phi(a)|$ for all $a \in G$.
- 5. Prove that isomorphism is a transitive relation on the set of all groups. That is, show that if G, H, and K are groups such that $G \approx H$ and $H \approx K$, then $G \approx K$.
- 6. Prove that S_4 is not isomorphic to D_{12} . (HINT: Consider orders of elements.)