Abstract Algebra
 Problem Set 6

Definition. Let a and b be integers. We write $\operatorname{gcd}(a, b)$ to denote the greatest common divisor of a and b.

Definition. Let $n>1$ be an integer. The set $U(n)=\{k \in \mathbb{Z}: 0<k<n, \operatorname{gcd}(n, k)=1\}$.

1. Prove that for any integer $n>1, U(n)$ forms a group under multiplication $\bmod n$.
2. Is $U(n)$ always cyclic, sometimes cyclic, or never cyclic? Justify your answer.
3. Prove that the set $\left\{\sigma \in S_{4}: \sigma(2)=2\right\}$ is a subgroup of S_{4}.
4. List all of the subgroups of S_{4}. Identify which of them are also subgroups of A_{4}.
5. Prove that S_{n} is nonabelian for $n \geq 3$.
6. Prove that A_{n} is nonabelian for $n \geq 4$.
7. Consider a regular tetrahedron (four sides, each one an equilateral triangle). Imagine labeling the corners, and then using that labeling to keep track of the symmetries of the tetrahedron. Which subgroup of S_{4} corresponds to the group of all symmetries of the tetrahedron? Explain.
8. Let G be a group, and let $g \in G$. Define the map $\lambda_{g}: G \rightarrow G$ by $\lambda_{g}(a)=g a$. Prove that λ_{g} is a permutation of G.
