Abstract Algebra Problem Set 6

Definition. Let a and b be integers. We write gcd(a, b) to denote the greatest common divisor of a and b.

Definition. Let n > 1 be an integer. The set $U(n) = \{k \in \mathbb{Z} : 0 < k < n, gcd(n, k) = 1\}.$

- 1. Prove that for any integer n > 1, U(n) forms a group under multiplication mod n.
- 2. Is U(n) always cyclic, sometimes cyclic, or never cyclic? Justify your answer.
- 3. Prove that the set $\{\sigma \in S_4 : \sigma(2) = 2\}$ is a subgroup of S_4 .
- 4. List all of the subgroups of S_4 . Identify which of them are also subgroups of A_4 .
- 5. Prove that S_n is nonabelian for $n \geq 3$.
- 6. Prove that A_n is nonabelian for $n \ge 4$.
- 7. Consider a regular tetrahedron (four sides, each one an equilateral triangle). Imagine labeling the corners, and then using that labeling to keep track of the symmetries of the tetrahedron. Which subgroup of S_4 corresponds to the group of all symmetries of the tetrahedron? Explain.
- 8. Let G be a group, and let $g \in G$. Define the map $\lambda_g : G \to G$ by $\lambda_g(a) = ga$. Prove that λ_g is a permutation of G.