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Abstract

The existence of electrical communication among
pyramidal cells (PCs) in the adult cortex has been
debated by neuroscientists for several decades. Gap
junctions (GJs) among cortical interneurons have
been well documented experimentally and their func-
tional roles have been proposed by both compu-
tational neuroscientists and experimentalists alike.
Experimental evidence for similar junctions among
pyramidal cells in the cortex, however, has remained
elusive due to the apparent rarity of these couplings
among neurons. In this work, we develop a neuronal
network model that includes observed probabilities
and strengths of electrotonic coupling between PCs
and gap-junction coupling among interneurons, in ad-
dition to realistic synaptic connectivity among both
populations. We use this network model to investi-
gate the effect of electrotonic coupling between PCs
on network behavior with the goal of theoretically ad-
dressing this controversy of existence and purpose of
electrotonically-coupled PCs in the cortex.

Introduction

Electrical communication between pyramidal cells
(PCs) in the mammalian cortex has been of interest
to neuroscientists for many years. During the early
stages of development, PCs are coupled by electrical
junctions (EJs) with decreasing degrees of connectiv-
ity over the first few postnatal weeks [19, 32]. Ex-
periments have shown that blocking these junctions
during embryonic stages of development disrupts the
final placement of neurons in the adult cortex, sug-
gesting a role for EJs during development in neuron
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migration. These experiments on development in ro-
dents report no EJs present in the cortex past the first
postnatal week; however, two experimental labs have
recently measured the properties of EJs between PCs
in the adult cortex [17,31]. Mercer et al. [17] discov-
ered one pair of EJ-coupled PCs in the rat neocortex,
while Wang et al. [31] measured ten EJ-coupled pairs
of PCs in the prefrontal and visual cortices of rats and
ferrets. The protein that might form this electrotonic
connection remains unknown, making further exper-
imental investigation difficult [31]. Additionally, the
coupling strength of EJs in the adult brain is much
higher than the strength measured in the develop-
ing cortex, 50% transmission in adults compared to
7% in the first postnatal week, indicating that these
might not be the same junctions. Due to the inability
of many experimental labs to detect these rare EJs
among PCs in the adult cortex, neuroscientists are
not yet completely convinced of their existence [18],
leading to a controversy over any potential functional
role.

Gap junctions (GJs), electrical connections that
typically form between the dendrites of inhibitory
neurons, on the other hand, have been well stud-
ied [10–12]. GJs between a particular type of in-
hibitory cell called fast-spiking (FS) cells are ubiq-
uitous in the cortex, both in the adult and during de-
velopment, and have been suggested to promote syn-
chronous and oscillatory activity among neurons in
the cortex [1,4,12,24,26]. In particular, GJs between
FS cells are typically comprised of the channel protein
Connexin-36 and several knock-out experiments have
been performed to deduce their function in promot-
ing synchrony and oscillations. Since the protein that
makes up the junction between PCs has not yet been
discovered, we follow the terminology in the study by
Wang et al. [31] and refer to the junction between PCs
as an electrotonic junction (EJ) and the one between
FS cells as a gap junction (GJ) to easily distinguish
between the junctions that couple the two different
types of neurons. In this work, we address the con-
troversy over the existence of EJs between PCs by
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using a computational model to investigate their po-
tential functional role in altering the dynamics of a
network containing both ubiquitous GJ coupling, as
well as rare, pair-wise EJ coupling.

We show that the global network behavior is largely
unaffected by the addition of pair-wise EJ coupling
when synaptic connections are sparse and random,
offering one possible conclusion to the controversy:
that the presence or absence of EJ-coupled PCs does
little to influence network behavior. On the other
hand, we also show that the EJ-coupled PCs them-
selves exhibit pair-wise synchrony and oscillations
generated through fast mutual excitation. The in-
fluence of this pair-wise synchrony on network ac-
tivity, however, is barely discernible from network
fluctuations. Next, we consider a network containing
strengthened synaptic connections from EJ-coupled
PCs to GJ-coupled FS cells. We show that the pres-
ence of EJ coupling between such pairs of PCs can
serve to reduce noise in incoming signals and elicit
network activity with highly variable firing patterns,
suggesting a possible functional role in information
processing.

The paper is organized as follows. In the Methods
section, we describe the neuron models, a measure
for determining the magnitude of synchrony, and the
parameter set for FS cells and PCs in our model.
In the Results section, we construct a realistic cor-
tical network model, with sparse synaptic coupling
and ubiquitous GJ-coupling among FS cells, and

characterize properties of the network dynamics for
multiple network dynamical regimes, in the presence
and absence of both GJ coupling among FS cells and
pair-wise EJ coupling between PCs.

Methods

Cortical neuron model

In this work, we use the Hodgkin-Huxley (HH) equa-
tions to describe the membrane potential of each
cell in the model network. While other point-
neuron models use modified versions of the simpler
integrate-and-fire (IAF) model to account for the
weak GJ coupling among interneurons [6, 15,20], the
experimentally-measured properties of a strong EJ
between pyramidal cells cannot be well-captured by
an IAF model. Specifically, due to the strong con-
ductance of the EJ, the post-junctional voltage is
sensitive to changes in the pre-junctional voltage, es-
pecially during an action potential, resulting in the
shape and size of the post-junctional spikelet being
dependent on the shape and size of the pre-junctional
action potential [31].

The HH model utilized in this work is de-
scribed as follows. The voltage vi across the
cell membrane of the ith neuron with capac-
itance C is described by the set of equations

C
dvi
dt

= −gL(vi − vR)− ḡNam
3h(vi − vNa)− ḡKn4(vi − vK)− gC

∑
j

(vi − vj)−GQ
i (t)(vi − vQ), (1)

where the synaptic conductances, GQ
i (t), are described by the equations

d

dt
GQ
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Q
i (t)

σr
+GQ

i,`(t),
d

dt
GQ

i,`(t) = −
GQ

i,`(t)

σr
+GQ
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d

dt
GQ

i,4(t) = −
GQ

i,4(t)

σr
+
∑
j 6=i

SQ
ijg(vprej ) +

∑
k

fQδ(t− T k
i ), Q = {E, I}. (2)

In Eq. (1), gL is the leak conductance, vR is the rest-
ing potential, ḡNa and ḡK are the maximal sodium
and potassium conductances, and vNa and vK are
the sodium and potassium reversal potentials, re-
spectively. The fourth term on the right-hand side
describes the current through the electrical junction
from all neurons that are coupled to neuron i, influ-
encing the voltage of the ith neuron with conductance
strength gC . The activation and inactivation parame-
ters, m, h, and n, model the gating of the ion channels

and exhibit dynamics described by the equation

dx

dt
= αx(v)(1− x)− βx(v)x, x = {m,n, h},

with each rate variable described by the set of
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voltage-dependent functions

αm(v) =
−0.32(v − vT − 13)

exp[−(v − vT − 13)/4]− 1
,

βm(v) =
0.28(v − vT − 40)

exp[(v − vT − 40)/5]− 1
,

αh(v) = 0.128 exp[−(v − vT − 17)/18],

βh(v) =
4

1 + exp[−(v − vT − 40)/5]
,

αn(v) =
−0.032(v − vT − 15)

exp[−(v − vT − 15)/5]− 1
,

βn(v) = 0.5 exp[−(v − vT − 10)/40],

as determined by Pospischil et al. [22] for FS interneu-
rons and PCs in the mammalian cortex.

The final term in Eq. (1) describes the current re-
ceived by the ith neuron through excitatory (Q = E)
and inhibitory (Q = I) synapses. These synaptic
conductances are described in Eq. (2) using fourth-
order kinetics as in Ref. [25]. The input from the jth
presynaptic cell is filtered through the function

g(v) =
1

1 + exp(−(v − 20)/2)
.

The right-hand side of the dynamical equation for
GQ

i,4 in Eq. (2) contains two sums: The first sum
models input from the jth presynaptic neuron with
strength SQ

ij for both excitatory and inhibitory synap-
tic inputs. The second sum models incoming spikes at
times T k

i with strength fQ that originate from out-
side the model network. These external spikes are
modeled by a Poisson spike train with rate ν. Note
that several of the parameters used in this model
are chosen through matching of voltage-clamp exper-
imental data for EJ-coupled PCs [31] and GJ-coupled
FS cells [10]; see Appendix for details.

Upstream input neuron model

To investigate the dynamical effects of the EJ-coupled
PC pairs, we simulate sensory input to PC pairs us-
ing the computationally-efficient IAF model, which
can capture sufficiently rich network dynamics of neu-
ronal systems. The dynamics of the ith model neuron
in the IAF input network are described by the set of

Table 1: Hodgkin-Huxley neuron parameter values
used in all simulations, unless otherwise stated.

Parameter FS cells PCs

From Literature [22]:

Capacitance C (µF/cm2) 1 1

vR (mV) -70 -70

vNa (mV) 30 55

vK (mV) -90 -80

vE (mV) 0 0

vI (mV) -80 -80

Through matching (see Appendix):

gL (mS/cm2) 0.1 0.025

gC (mS/cm2) 0.012 0.08

ḡNa (mS/cm2) 30 60

ḡK (mS/cm2) 5.0 3.0

vT (mV) -58 -45

equations

C
dvi
dt

= −gL(vi − εR)− gEi (t)(vi − εE)

− gIi (t)(vi − εI),

σQ dg
Q
i

dt
= −gQi + hQi , Q = {E, I},

σQ dh
Q
i

dt
= −hQi +

∑
j 6=i

SQ
j

∑
k

δ
(
t− T k

j

)
+ fQ

∑
k

δ
(
t− T k

i

)
,

where vi(t) is the voltage of the ith neuron, C =
1 µF/cm2 is the capacitance, gL is the leak con-
ductance, εR is the resting potential, and εE and
εI are the reversal potentials for the excitatory and
inhibitory currents, respectively. The synaptic con-
ductance has time constants σE and σI and synaptic
strengths SE and SI for excitatory and inhibitory in-
puts respectively. See Table 2 for parameter values.

The dynamics of the voltage are such that the in-
coming spikes from other neurons in the network and
inputs from the Poisson spike train modulate the volt-
age. Note that the rate, ν, of the Poisson drive is
varied such that the network exhibits a variety of be-
haviors, but the product fQν remains constant. In
the absence of incoming spikes, the voltage decays
exponentially toward the resting potential, εR. If the
voltage is raised such that it reaches a threshold, de-
termined by vT = −55 mV, the neuron is said to have
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spiked, the spike time is recorded, and the voltage is
reset to εR. The procedure for efficiently implement-
ing the time-evolution equations and calculating the
spike time can be found in Ref. [23]. The IAF model
network is all-to-all connected, including 75% excita-
tory and 25% inhibitory neurons. Results were ob-
tained from simulations of five seconds for each trial.

Table 2: Upstream IAF neuron parameter values used
in the structured network, unless otherwise stated.

Parameter Value Parameter Value

gL (mS/cm2) 0.05 εR (mV) -70

εE (mV) 0 εI (mV) -80

σE (ms) 1.0 σI (ms) 4.0

SE ( mS/cm2) 0.2 SI ( mS/cm2) 0.4

External Drive Parameter Range

ν (Hz) 1000 → 5000

fE (mS/cm2) 11.6 → 12.1

fI (mS/cm2) 10.0 → 9.2

Network Setup

We construct a network of PCs and FS cells with
the goal of understanding how EJ-coupling between
pairs of PCs affects network dynamics. We organize
400 neurons on a 20 × 20 grid, including 25% FS
cells and 75% PCs [2,5], with the coupling probability
from one cell to another, PQ, dependent on their cell
type, where Q = {E, I}. This probability decays
exponentially with distance [16, 33, 34] according to
the formula

PQ(x, y) = PQexp

[
− (
√
x2 + y2 − 1)2

8

]
,

where x is the horizontal, and y the vertical, dis-
tance. Galarreta and Hestrin [10] measured that FS
cells form GJ coupling with other FS cells at dis-
tances of up to 80 µm with a coupling probability of
about 60%. Due to the small size of our network, we
allow the FS cells to form a GJ connection with any
other FS cell in the network with a coupling prob-
ability of 60%. Wang et al. [31] measured that an
EJ occurs with a 5% probability between touching or
overlapping PCs in the neocortex. In our model, we
allow only neighboring (up, down, left, right) PCs to
form an EJ with a 5% probability, resulting in pairs
of EJ-coupled PCs. Table 3 summarizes the synaptic
and electric coupling probabilities used in the cortical
network.

Table 3: Table of network connectivity values for the
cortical network.

Synaptic coupling parameters FS cells PCs

Coupling Probability, PE (%) 25 30

(from excitatory neurons)

Coupling Probability, P I (%) 50 20

(from inhibitory neurons)

Synaptic time constant, σE
r (ms) 0.4 0.4

(excitatory)

Synaptic time constant, σI
r (ms) 1.0 1.0

(inhibitory)

Electrical coupling parameters FS cells PCs

Coupling Probability (%) 60 5

Synchrony Measure

We developed the SD measure to determine the de-
gree of synchrony within a network synchronous event
(NSE) [8]. The NSE is determined by calculating
the time at which the average voltage of the network
crosses a threshold, indicating a time at which the
majority of the population is active within a small
window. For each NSE, the time difference from each
network spike within ±20 ms of the NSE time is cal-
culated, counted, and binned. The SD measure is
defined as the standard deviation of the distribution
of time differences computed for all NSEs in the net-
work. Small values of the SD measure indicate small
deviations in the time difference from the NSE time
to each spike time of all participating neurons (tight
synchrony), whereas larger values of the SD measure
indicate larger variations in the time from each neu-
ron’s spike time to the NSE time.

Results

The results are organized as follows. First, we con-
sider a network model to investigate the dynamics
resulting from the inclusion of EJ and GJ coupling
for both mean-dominated and fluctuation-dominated
regimes. We show that the inclusion of GJ coupling
between FS cells has a strong synchronizing effect on
the network, with and without the inclusion of EJ
coupling between PCs. In the presence or absence of
GJ coupling, adding EJ coupling between a rare num-
ber of pairs of PCs has little effect on network syn-
chrony, the observed changes are small and on the or-
der of network fluctuations. Finally, we highlight the
pathway from the EJ-coupled PCs to the GJ-coupled
FS-cell network and propose a new network structure
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in which EJ-coupled pairs of PCs might play a role
in information processing.

Mean-dominated Regime

We begin with the mean-dominated regime in which
the external drive, as described by the frequency of
the Poisson spike train, ν, and the strength of each
spike, fQ, has a high frequency and a small strength.
Since each neuron receives many spikes, the input to
all neurons is nearly uniform, leading to a network of
neurons that fire regularly and often synchronously.

We demonstrate that a typical mean-dominated
network exhibits regular dynamics through raster
plots, a plot of the spike times of all neurons, and
inter-spike interval (ISI) histograms, a plot of the
time difference between successive spikes for each
neuron in the network, for each coupling regime (e.g.,
EJ coupling); see Fig. 1. First, notice that the net-
works without GJ coupling (with and without EJ
coupling), and similarly the networks with GJ cou-
pling (with and without EJ coupling), have very sim-
ilar average time differences. We calculate the coeffi-
cient of variation (CV), or the ratio of the standard
deviation to the mean of the ISI distribution, which
describes the regularity of firing patterns of neurons
in the network, where a CV value of 1 indicates a
Poisson process. Then, CV values less (more) than
one indicate a firing pattern more (less) regular than
a Poisson process. In the mean-dominated case, all
CV values are well below one, indicating regular fir-
ing patterns, as expected and demonstrated by the
raster plots and ISI plots of Fig. 1.

Note that the ISI distribution may not be a direct
indicator of network synchrony since it describes the
time difference of successive spikes of each individual
neuron, not taking into account the spike timing of
other neurons in the network. This means that the
firings of two neurons can share an ISI distribution,
but not align in time, indicating that they are both
firing very regularly and at a similar frequency, but
may be unsynchronized. The raster plots, however,
show that both networks containing GJ coupling ex-
hibit clear synchrony, as shown by the alignment in
time of excitatory (red) and inhibitory (blue) neu-
rons’ spike times, while networks that do not contain
GJ coupling do not exhibit as clear a synchrony; see
Fig. 1.

To aid in our goal of understanding how network
dynamics are affected by the addition of EJ coupling,
we focus on the oscillations present in networks con-
taining GJ coupling. To quantify characteristics of
the oscillations, we calculate properties of the power
spectral density (PSD), a measure that determines

the power of each frequency present in the network.
Specifically, characteristics of the PSD include: the
frequency at which the highest peak occurs (most
prominent frequency exhibited by the network) and
the width and height of this peak (tightness and
power of this frequency). Figure 2A shows the aver-
age PSD for each coupling regime over 30 realizations.
Notice that the networks without GJ coupling do not
exhibit strong oscillations, i.e., there is no significant
peak in the PSD, as was anticipated from the raster
plots in Fig. 1. For this reason, we only focus on the
networks with GJ coupling and investigate the differ-
ence in frequency, width, and height of the prominent
peak of the PSD between cases with or without EJ
coupling in the networks; see dashed green and solid
purple curves in Fig. 2A.

Notice that the PSD for the networks with or with-
out EJ coupling are very similar. The prominent fre-
quency occurs near 30 Hz in both networks, and the
power (height) of the peak corresponding to this fre-
quency, as well as the tightness (width) of this peak,
are also very close; see Fig. 2B. To show that this
is not the result of the choice in external drive, we
vary the rate of external drive, ν, from 4000 to 8000
Hz, where the strengths fE and f I are changed for
each rate such that fQν remains constant. Figure 2C
shows the percent change from the network without
EJ coupling to the network with EJ coupling (i.e.,
taking the percent change that results from the addi-
tion of EJ coupling). Observe that the total changes
in all three PSD characteristics are less than 7% for
all external rates, indicating that adding EJ cou-
pling to a network that contains GJ coupling does
not strongly influence the frequency or power of the
oscillations in the network.

Another important characteristic of mean-
dominated networks is that the neurons often exhibit
synchronous firing. We analyze the synchrony of
the different regimes by calculating the number of
network synchronous events (NSEs) per second, a
measure for network synchrony, and the SD measure,
which determines the tightness of each individual
NSE (see the Methods section). As shown in the
raster plots of Fig. 1, the networks containing GJ
coupling behave differently than those that do not.
Therefore, to study the synchronous events occurring
in each network, we choose two different thresholds
for the average voltage; see Fig. 3A. Additionally,
since we are interested in determining the effect of
adding EJ coupling to a network, it is sufficient to
keep the threshold constant for the two network
regimes containing GJ coupling, as well as for the two
network regimes that do not contain GJ coupling,
and measure how the network synchrony properties
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Figure 1: Raster plots and inter-spike interval (ISI) histograms for each of the four coupling regimes: No EJ
or GJ coupling, GJ Coupling (but no EJ coupling), EJ Coupling (but no GJ coupling), and both EJ and GJ
coupling. Each network receives mean-dominated external input. Parameters are as follows: ν = 8000 Hz,
fE = 0.23125 mS/cm2, f I = 0.4 mS/cm2, simulation in each trial runs for 10 seconds of simulated time.
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Figure 2: Characteristics of oscillations in the mean-dominated regime. A: The power spectral density (PSD)
of the network for each coupling case. B: Characteristics of the primary peak of the PSD for the network
containing GJ coupling comparing the cases with and without EJ coupling. The measurements are averaged
over 30 trials, where the error bars represent the standard deviation across the trials. C: The difference
in height, width, and frequency of the primary peak in the PSD for several values of the external rate, ν,
calculated as a percent change between GJ-coupled networks with and without EJ coupling. The external
drive parameters for the network shown in A and B are: ν = 8000 Hz, fE = 0.231 mS/cm2, f I = 0.4
mS/cm2. As the external rate ν changes in C, the strengths change such that fEν and f Iν remain constant
at 1850 mS/(s · cm2) and 3200 mS/(s · cm2), respectively.
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change with the addition of EJ coupling. First,
notice that the number of NSEs per second and the
SD measure do not change significantly with the
addition of EJ coupling, as shown in Figs. 3B and C.
Note that while the number of NSEs per second in
the networks that do not contain GJ coupling (solid
blue and striped orange bars) is higher than for
the networks containing GJ coupling (striped green
and solid purple bars), the SD measure shows that
those events are more tightly synchronized for the
networks containing GJ coupling, as expected from
the average voltage plots in Fig. 3A. The tightness
of each NSE, as well as the number of NSEs, does
not significantly change with the addition of EJ
coupling, as shown in Fig. 3D by calculating the
percent change of each network with the addition of
EJ coupling over many values of the external rate.

The addition of EJ coupling in the presence of a
mean-dominated external drive does not seem to sig-
nificantly impact the oscillatory or synchronous net-
work dynamics. We next consider a network in which
the external drive is fluctuation-dominated and mea-
sure changes in network properties with the addition
of EJ coupling.

Fluctuation-dominated regime

In this section, we examine the fluctuation-dominated
regime and characterize changes in the network be-
havior as a function of the addition of EJ coupling.
First, we point out that the dynamics of networks
receiving fluctuation-dominated input differs from
those receiving mean-dominated input; see Fig. 4. In
particular, networks receiving fluctuation-dominated
input do not exhibit oscillations, and even the net-
works containing GJ coupling do not exhibit much
synchrony. The ISI distributions are broad, with CV
values greater than one, indicating that the networks
are firing irregularly. Note that the difference in the
CV value for the networks with GJ coupling, with
and without EJ coupling, is larger than those in the
mean-dominated case.

Therefore, we characterize changes induced by the
addition of EJ coupling by looking at the ISI and
CV over many realizations in Figs. 5A and B, and
several values of the external rate in Fig. 5C. No-
tice that the networks containing GJ coupling have,
on average, lower ISI values and higher CV values
than those without GJ coupling (with or without EJ
coupling), indicating that the neurons in these net-
works fire closer together in time and more irregu-
larly. However, adding EJ coupling to the network
that does not contain GJ coupling seems to have neg-
ligible effects on the CV, see striped orange and solid

blue bars in Fig. 5B and the two left-most columns
of the ISI and CV portions of Fig. 5C. The CV val-
ues do change with the addition of EJ coupling to a
GJ-coupled network; however, these values are small,
at most we see a percent of change of around 6%,
and the effect (either an increase or decrease in CV
value) seems to vary with changes in the external
rate, note the light and dark squares in the final col-
umn of Fig. 5C. Note that these changes exemplify
the stochasticity of the model and further emphasize
the lack of significant evidence for a discernible effect
that the addition of EJ coupling might have on global
network properties.

Though the network effects resulting from the ad-
dition of EJ coupling are small, we expect that the
EJ itself strongly couples pairs of PCs. Therefore,
we next analyze the behavior of these pairs of PCs
within each network regime and characterize how the
dynamics of the PCs themselves are affected by the
addition of an EJ.

EJ pairs of PCs

In this section, we characterize the behavior of the
pairs of PCs in each coupling regime receiving differ-
ent types of external drive. We begin by showing that
the EJ-coupled pairs of PCs are strongly synchro-
nized when compared to those same pairs without
EJ coupling; see raster plots of a few example pairs
of EJ-coupled PCs in Fig. 6A. We use the van Rossum
distance, a measure for determining the degree of syn-
chrony between the spike trains of two neurons [30],
to quantify this synchrony by calculating the distance
between the spike trains of each EJ-coupled pair and
averaging over all EJ-coupled pairs for each network
coupling regime. It is clear that the network regimes
in which the PCs contain EJ coupling (with and with-
out GJ coupling) have a much smaller van Rossum
distance than those without EJ coupling; see orange
and green striped bars as compared to blue and pur-
ple solid bars in Fig. 6B. We also observe that the ad-
dition of GJ coupling to the network creates a smaller
van Rossum distance between the pairs that are not
EJ coupled simply because the inhibition from the
GJ-coupled interneurons creates more regular firing
of all neurons in the network; compare the blue and
purple solid bars in Fig. 6B. Interestingly, the van
Rossum distance of the EJ-coupled cells in a network
without GJ coupling is much lower than the network
containing both EJ and GJ coupling, see orange com-
pared to green striped bars. This implies that the EJ
tightly synchronizes the two pyramidal cells, but that
this synchrony can be influenced by the behavior of
the other neurons in the network, such as the GJ-
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Figure 3: Synchrony measures for networks receiving a mean-dominated external drive. A: The average
voltage of all neurons in the network, excluding the EJ-coupled cells, for the non-GJ-coupled networks with
or without EJ coupling (top), and the GJ-coupled networks with or without EJ coupling (bottom). The
threshold for determining NSEs are shown as black lines at -49 mV and -42 mV, respectively. B: The number
of NSEs per second for each regime, where the black bars indicate standard deviation over 30 realizations
and the colors coordinate with the regime described in A, and are labeled below each bar. C: The SD
measure for each network regime. The networks shown in A-C are for ν = 8000 Hz,fE = 0.231 mS/cm2,
f I = 0.4 mS/cm2. D: The percent of change in the number of NSEs per second and the SD measure from
network without EJ coupling (with and without GJ coupling) to the network containing EJ coupling (with
and without GJ coupling).

coupled interneurons.

We next look at the van Rossum measure over dif-
ferent values of the external drive. Observe that the
distance between the spike trains of EJ-coupled PCs
in both a network with just EJ coupling and a net-
work containing both EJ and GJ coupling decreases
with an increase in the external rate; see Fig. 6C.
Interestingly, the van Rossum distance between PC
pairs in a network containing GJ coupling changes
more drastically over the external drive than in net-
works without it, reinforcing the idea of competition
between the network dynamics and the strong EJ
coupling between the pair of PCs.

Clearly an EJ between pairs of PCs affects the be-
havior of those pairs, but we have shown that the
resulting change in behavior does not significantly al-
ter the network dynamics. There are, however, subtle

changes in network behavior that can be attributed
to the addition of EJ coupling. For example, in the
mean-dominated regime, we have shown that there
does not seem to be a significant change in the num-
ber of NSEs from a network containing GJ coupling
to a network containing both EJ and GJ coupling.
However, it might be the case that the synchrony be-
tween the EJ-coupled PCs is indeed transmitted to
the network, but that the result is small. We show
in Fig. 7 that there are indeed small changes in the
behavior of the network in response to the addition
of EJ coupling. For example, we count the number
of spikes occurring in the network in an interval of
± 20 ms from each NSE; see Fig. 7A. The results
shown in Fig. 7A indicate that the addition of EJ cou-
pling might elicit more neurons to spike during each
NSE. Additionally, we calculate the average voltage
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of all cells in the network (excluding the EJ-coupled
PC pairs), subtract out the mean of this curve, and
calculate the positive area. This is a measure for
the density of coinciding active neurons since higher
peaks in the average voltage correspond to synchro-
nized events; see Fig. 7B. The percent of change from
a network containing GJ coupling to a network con-
taining both EJ and GJ coupling is positive, as shown
in the right column of Fig. 7C, indicating that the
density of active neurons during each NSE increases
with the addition of EJ coupling.

We have shown in this section that the coupled PC
pairs are significantly influenced by the addition of an
EJ and that the GJ-coupled interneurons affect the
dynamics exhibited by these pairs (recall Fig. 6B).
Also, though the effect is small, we have shown that
the addition of EJ coupling can lead to an increase
in the number of active neurons during synchronous
network events (see Fig. 7). In previous sections, we
have shown that for several different network regimes,
using experimentally-observed synaptic connectivity
percentages and weights of the adult neocortex, the
behavior of a network without EJ coupling does not
differ significantly from one that contains EJ cou-
pling. However, assuming the EJ is present in the
network for a purpose, we use the small changes in
the behavior of EJ-coupled cells as a basis for a con-
jecture on a possible network role for EJ-coupled be-
tween pairs of PCs.

Possible functional role for EJ-coupled
PC pairs

The PCs connected by an EJ exhibit clear synchrony;
however, this synchrony does not seem to significantly
impact the synchrony of the rest of the network. The
observed effects are small, eliciting less than a 5%
change in network synchrony with the addition of EJ
coupling. One suggestion is that, due to the sparse
synaptic coupling of the cortex, the synchronizing ef-
fects of the EJ between pairs of PCs do not prop-
agate to the rest of the network. Although cortical
synaptic coupling is sparse on average, this does not
exclude the possibility that certain synapses are selec-
tively strengthened. Therefore, to uncover a possible
functional role for these EJ-coupled pairs of PCs, we
design a network in which the synapses that trans-
mit information to and from the EJ-coupled PCs are
strengthened.

Specifically, we restrict our focus to the regime in
which the network contains GJ coupling, since re-
alistic cortical networks contain GJ coupling, and
choose one EJ-coupled PC pair to analyze [deemed
the Network-Driven Excitatory Pair (NDEP)]. We

include a ten-fold increase in the synaptic connec-
tions from the NDEP to the GJ-coupled inhibitory
neurons, and a three-fold increase in the synaptic
strength from the inhibitory cells back to the NDEP.
Note that the coupling probabilities among the dif-
ferent cell types, PQ, remain the same as described in
Table 3 and we fix the external drive at ν = 5000 Hz
and fE = 0.2 mS/cm2 and f I = 0.44 mS/cm2. Addi-
tionally, we assume a fraction of the population, 20%
of the inhibitory cells and 30% of the excitatory cells,
receive an additional sensory drive mimicking an in-
coming sensory stimulus. This drive is modeled by a
Poisson spike train with rate ν = 100 Hz, and fEsens
= 3.5 mS/cm2 and f Isens = 10.0 mS/cm2 for those
randomly-chosen neurons. The NDEP, however, re-
ceives sensory drive from the upstream IAF neurons,
so that the spike times received by the NDEP can be
controlled to go from unsynchronized to synchronized
by controlling the external drive to the upstream IAF
network.

In detail, the IAF upstream network is stimulated
using external rates in the ranges described in Ta-
ble 2, where the synchrony of each simulation can
be measured by counting the number of times the
instantaneous firing rate of the IAF network crosses
a threshold (similarly to the process of finding the
NSEs), called the input synchrony. Figure 8A shows
two example IAF raster plots and the resulting in-
stantaneous firing rates, with the threshold for deter-
mining the input synchrony shown as a red line. The
NDEP, shown imbedded in the HH model schematic
in Fig. 8B, receives the previously-computed spikes
from a set of neurons in the IAF model chosen ran-
domly, but consistently, such that each PC in the
NDEP receives, on average, the same number of
spikes (for all input synchrony values). We analyze
the behavior of the neurons in the NDEP and, more
importantly, the behavior of the downstream cortical
network, as a function of this input synchrony, with a
particular focus on potential functional roles the EJ
might play in organizing network activity.

Due to the increase in synaptic strength from the
NDEP to the interneuron population, we find that
spiking of both neurons in the NDEP can elicit
network-wide firing events, or NSEs. To illuminate
a possible role of the EJ, we measure the number of
NSEs that result from the firing of an NDEP that
is EJ-coupled (has a conductance value, gC , of 0.08
mS/cm2) and the NDEP that has the EJ turned off
(conductance is set to zero). We show that a network
containing an NDEP with the EJ turned on produces
significantly more NSEs than one with the EJ turned
off, see the top panel of Fig. 8C. This increase in the
number of NSEs is consistent across all input syn-
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Figure 7: EJ-coupled PCs influence network behavior A: A histogram of the number of spikes, split to show
the excitatory and inhibitory spikes separately, occurring within ± 20 ms of each NSE, for the network
containing GJ coupling only (solid purple) and the network containing both EJ and GJ coupling (striped
green). B: The area under the average-voltage curve for all neurons in the network, excluding the EJ-coupled
pairs, for the network containing GJ coupling (solid purple) and both EJ and GJ coupling (striped green).
C: The percent of change from a network with just GJ coupling [solid purple in A and B] to a network
containing both EJ and GJ coupling [striped green in A and B] for the number of spikes per NSE and the
area under the average-voltage curve over several values of the external rate. Simulations in A and B were
calculated using the following parameters: ν = 8000 Hz, fE = 0.23125 mS/cm2, f I = 0.4 mS/cm2.
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Figure 8: Schematic of the two-layer network. A: Top: Raster plots for an unsynchronized (left) and
synchronized (right) IAF input network, with colors coordinating with the neuron in the NDEP to which it
projects [see B]. Bottom: The instantaneous firing rate for each type of network is plotted below each raster
with a threshold of 35 Hz plotted in red, used to determine the input synchrony measure. B: Schematic
downstream HH network, with one NDEP shown enlarged and color coordinated with the spikes from the
IAF network that are received by each neuron in the NDEP. The strength of the synaptic connections are
illustrated by the weight of the line between each cell, with the arrow for excitation and ball for inhibition.
C: Top: The number of NSEs per second for the EJ turned on (yellow, dash-dotted) and turned off (black,
solid) and Bottom: the SD measure of all neurons in the network (except the NDEP) for the EJ turned
on and off over a range of input synchrony values. The solid line indicates the average, while the shading
indicates the standard deviation, over 30 realizations. D: The average difference in the SD measure and the
NSEs/sec over all input synchrony values. The black bars indicate standard deviation.

12



chrony values, with the rate of increase for both the
NDEP with the EJ turned on and off being similar.

Though the rate at which the number of NSEs in-
creases with incoming synchrony is similar for the
network with the EJ turned on and off, we observe
that each NSE is more synchronized (exhibits a lower
SD measure) when the NDEP has an EJ that is
turned on, as compared to when it is turned off, as
shown in the bottom panel of Fig. 8C. As demon-
strated earlier (e.g., see Fig. 3), GJ-coupled networks
tend to generate NSEs when a significant portion of
the inhibitory neurons receive enough excitation to
fire. Then, since the GJ has a large coupling prob-
ability and range, most inhibitory neurons are near
threshold such that when a few neurons fire an action
potential, the spikelet that occurs due to the GJ is
enough to push some more to fire, and eventually the
rest of the network will fire as well. When the NDEP
has the EJ turned on, a subset of the inhibitory pop-
ulation receives excitatory spikes from two neurons
that fire synchronously, as opposed to asynchronously
when the EJ is turned off, and thus the cascade of
firing in the inhibitory population occurs much more
rapidly, yielding a more synchronized NSE.

The effect on these two synchrony measures (num-
ber of NSEs/sec and SD measure) of turning the EJ
on and off is large, yielding an 83% increase in the av-
erage number of NSEs/sec over all input synchrony
values, and a 15% decrease in the SD measure, from
the network containing an NDEP with the EJ turned
off to the network containing an NDEP with the EJ
turned on; see Fig. 8D. These results combine to
support the hypothesis that an NDEP with the EJ
turned on requires a less synchronous sensory input
to generate the same number of NSEs than an NDEP
with EJ turned off, and that each NSE is itself more
synchronized than when the EJ is turned off. Thus,
we observe that the nonzero EJ creates an NDEP that
reduces temporal jittering of spikes and enhances the
associations between spike events.

As shown above, one PC pair with the EJ turned on
may play an important role in regulating the network
spiking events. However, in the cortex, several pairs
of EJ-coupled PC pairs were detected. To this end,
we introduce another NDEP into the downstream HH
network and note that, in this situation, we consider
two cases for the IAF input to the two NDEPs. One is
the case in which the two NDEPs receive input from
the same network of upstream neurons (same IAF in-
put). In this case, the spikes received by each NDEP
will be similarly timed since they will have originated
from one network. Another case is one in which the
NDEPs receive input from patches of the upstream
IAF network that are operating as separate subnet-
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works (different IAF input). In this case, the spikes
received by each NDEP will have similar statistics,
but will originate from different realizations of the
IAF network, and thus may have different spike tim-
ings. We analyze the downstream network behavior
in both cases.

First, we note that each NDEP independently be-
haves similarly to the one-NDEP case, generating
more NSEs that are each more tightly synchronized
than those generated by an NDEP with EJ turned off;
see Fig. 9A and compare blue and red bars to grey
bar. These effects are on the same order as those
seen in the one-NDEP case, with percent changes
from a network with EJ turned off to a network with
EJ turned on averaging about 80% for the number
of NSEs per second and -15% for the SD measure;
see Fig. 9B. We note that, however, the two cases
of IAF inputs generate different results for the num-
ber of NSEs, both of which are smaller than the case
of simply doubling the number of NSEs that is mea-
sured for the one-NDEP case (compare blue and red
bars to green bar in Fig. 9A). This suggests that there
may be interactions between the two NDEPs that re-
sult in inhibition of the firing of the network in some
cases (since the number of NSEs is less than double
the number from the one-NDEP case), see Ref. [8] for
more details on this interaction.

We analyze this interaction by measuring how the
spike pattern of the network differs between the one-
NDEP regime and the two input cases for the two-
NDEP regime. To do this, we calculate the average
firing rate of the excitatory neurons over the course
of the simulation and find times at which this average
firing rate crosses a threshold of 1 Hz; see Fig. 9C.
These crossings might represent times at which the
excitatory population is sufficiently synchronized to
send information to further downstream areas. We
choose those simulations that have similar firing rates
(average over four regimes is 2.87 Hz with a standard
deviation of 0.21 Hz) to ensure that the variability
in the spiking pattern is not due to changes in the
firing rate. To understand how the coding of infor-
mation might change for each coupling regime, we
calculate the time difference between excitatory neu-
rons’ firing events and plot a histogram of the time
differences; see Fig. 9D, paying particular attention
to the CV value of each histogram. Notice that the
CV value for the network containing two NDEPs re-
ceiving the same IAF input (0.77) is higher than for
the networks with no EJ (0.49) and one NDEP (0.53),
reflecting higher firing variability in the network con-
taining two NDEPs. The nontrivial interaction be-
tween two NDEPs, especially in the case when input
to each NDEP originates in different IAF input net-

works, results in a network that has a highly variable
firing pattern, allowing the network to have a larger
coding capacity.

Discussion

In this work, we develop a point neuron model that
reproduces experimentally-observed behavior mea-
sured from pairs of GJ-coupled FS cells and EJ-
coupled PCs. Using this model, and organizing
the neurons into a network, we show that, in the
mean-dominated regime, synchrony and oscillations
naturally arise with the addition of ubiquitous GJ-
coupling among the FS cells. This property of
dendro-dendritic gap junctions has been observed ex-
perimentally, as well as demonstrated mathemati-
cally [3,7,26,27]. With the addition of pair-wise EJs
between PCs, however, the network appears to ex-
hibit little to no change in its global dynamics. We
show that the measured effects on synchrony and os-
cillations are small, less than a 7% change on aver-
age, and on the order of the network fluctuations.
Then, we study the fluctuation-dominated regime in
which the network firing pattern is much more irregu-
lar. The addition of GJ-coupling in this regime elicits
little network synchrony and no oscillations. In this
regime, we investigate how the regularity of the firing
pattern changes with the addition of EJs to networks
that do and do not contain GJ coupling. Using the
inter-spike interval (IS) and the coefficient of varia-
tion (CV), we show that the addition of GJ coupling
decreases the average time between spikes (increases
the firing rate) and increases the regularity of the
firing (decreases the CV). With the addition of EJ
coupling between pairs of PCs, we do not observe
any significant change in the firing rate or the firing
pattern of the network; again, any observed changes
are on the order of network fluctuations.

With the goal of understanding what role pair-wise
EJs might play in influencing network dynamics, we
next investigate how the firing pattern of the pairs
of PCs themselves are affected by the addition of an
EJ. In this case, we show a very significant increase
in the synchrony between the spiking of these pairs of
neurons with the addition of EJ coupling. Note that
the spiking dynamics of the EJ-coupled pair of cells
differs from that of a synaptically-coupled pair of PCs
in that the synchrony is much stronger and the firing
rate is much higher (due to the fast transmission of
the electrical junction) leading to fast-frequency oscil-
lations. We show that this increased synchrony may
be responsible for recruiting more FS cells into each
synchronous event, though this change is small, less
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Figure 9: Comparison of one- and two-NDEP networks for each network regime: EJ turned off (no EJ),
EJ turned on (one NDEP), two NDEPs with input from the same IAF upstream network, and two NDEPs
receiving input from neurons in different IAF networks. A Left: The number of NSEs per second averaged
over all input synchrony values, with an additional comparison to a hypothetical network in which the
number of NSEs is doubled from the one-NDEP case. Right: The SD measure for each regime averaged over
all input synchrony values. B: The percent change from a network with the EJ turned off to the EJ turned
on, for all network regimes. C: The instantaneous firing rate of the excitatory neurons in each coupling
regime. D: Left: Histogram of time differences between excitatory neurons’ spiking events [defined in C]
comparing one NDEP (yellow), EJ turned off (grey), and two NDEPs receiving different IAF input (red).
Right: Histogram of time differences between excitatory neurons’ spiking events [defined in C] comparing
two NDEPs receiving different IAF input (red) and the same IAF input (blue).

than 5%. Since we have shown that sparse and ran-
dom synaptic connectivity among the neurons does
not allow for significant changes in the network dy-
namics due to the inclusion of EJ coupling, we form a
new network in which the synaptic connections from
the EJ-coupled PCs to the inhibitory neurons (and
back) are enhanced. In this new network, we show
that the addition of EJ coupling increases the num-
ber of synchronous events in the network and, ad-
ditionally, each event is yet more synchronized than
those that are generated in a network without EJ cou-
pling. Importantly, the presence of two NDEPs in the

network does not simply result in twice the number
of synchronous events, but instead allows for inter-
actions between the events, resulting in a network
with a highly variable firing pattern. This potential
functional role of EJ-coupling in information process-
ing relies upon the tight, precise synchrony that oc-
curs between the EJ-coupled cells. In addition, syn-
chronized network dynamics may arise more readily
from networks which contain EJ-coupling compared
to those that do not (see Ref. [8] for an investigation
of EJ-coupled PCs organizing network dynamics).

Electrotonic junctions have been observed in many
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brain regions, their properties have been measured,
and their functional roles have been proposed. In
the hippocampus, for example, EJ coupling has been
shown to be involved in fast-frequency oscillations
when networks of PCs are extensively coupled axo-
axonally [28]. Additionally, EJ coupling among PCs
in the neocortex has been proposed to play a role in
generating spatiotemporal patterns of fast-frequency
oscillations when the PCs are interconnected with
EJs [14, 29]. During cortical development, experi-
mentalists have also found EJs among PCs [19]. In
the mouse visual cortex, for example, experiments
have shown that EJs couple PCs that originate from
the same progenitor cell [32]. During the embryonic
stage, while cells are migrating to the cortical plate,
EJs between PCs have been shown to be important
for successful migration to the correct location [9].
Once the mouse is born, however, the role of the junc-
tion remains unclear. Additionally, during the first
postnatal week, the coupling strength of this junc-
tion decreases such that no couplings are found by
the second post-natal week [32].

In the adult cortex, however, measurements of EJs
between PCs have been scant, leading to a contro-
versy over their existence and possible functional role.
The most extensive experiment to date, by Wang et
al. [31], measured rare, pair-wise couplings of cells
whose soma are either touching or overlapping, which
may explain the experimental difficulty in reproduc-
ing the study. In addition, this study found pu-
tative contacts between the dendrites of some EJ-
coupled cells and the axons of other EJ-coupled cells.
In this work, we use a point-neuron model to show
that pair-wise coupling of PCs with experimentally-
determined junctional strength results in synchrony
and fast-frequency oscillations, similarly to networks
of EJ-coupled PCs in the hippocampus, but of just
those two coupled cells. Using typical network cou-
pling probabilities and strengths, we do not observe
a significant change in the network behavior due to
the addition of EJ-coupled pairs of PCs, suggesting
no functional role for these pairs and no further sup-
port for their existence. It should be noted that the
location of the EJ along either the dendrites or the
axons of coupled PCs could change the behavior, and
thus the function and network effect, of EJ-coupled
PCs. It is known that the dendrite has a filtering
effect for the voltage response due to its cable prop-
erties. Namely, the magnitude of the voltage can be
very different between the soma and the dendritic
site, thus leading to different electrical currents re-
ceived by the postsynaptic neuron. In addition, it
has been recently found that nonlinear interactions
exist among synaptic currents in both passive and

active dendrites [35]. It is expected that similar non-
linear interactions could also exist between the elec-
trical currents and synaptic currents. Nevertheless, it
would be interesting to investigate the location effect
(at the soma or the dendritic site) of electrical cou-
pling on neuronal network dynamics and further anal-
ysis of a more detailed, spatial neuron model would
be required.

Another possible conclusion one can draw from
these results is that the EJs measured by Wang et
al. [31] in the adult cortex are simply a relic of those
present during the first post-natal week of develop-
ment. The coupling strength measured by Wang et
al. [31], however, is much larger than the one reported
for EJs during development (CC of 50% in adult com-
pared to 7% in development [32]), suggesting that the
junctions measured in the adult cortex may be differ-
ent from those measured during development. As-
suming instead that these junctions are not simply
left over from development, and exist in the adult cor-
tex for some purpose, a third conclusion one can draw
is that pairs of EJ-coupled PCs may have a functional
role in reducing noise in incoming stimuli, producing
synchronized network events, and increasing network
coding capacity. Although increased synaptic connec-
tivity between EJ-coupled cells and the FS cells has
not explicitly been measured, it could be plausible
that this type of synaptic coupling can come about
from Hebbian plasticity due to the correlated firing
activity between EJ-coupled PCs and GJ-coupled FS
cells, leading to an enhanced synaptic connection. In
addition, these rare, strong synapses may not show
up in the average sparse connectivity reported by ex-
perimentalists.
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Appendix

In this Appendix, we describe the process by which
parameter values for the FS cells and PCs in the cor-
tical network are chosen. Included in each section is
evidence that those parameter choices lead to neuron
behavior similar to experimentally-measured behav-
ior for electrically-coupled neurons of each type.

Parameter Choices

We choose parameter values for the HH model of the
downstream cortical network to qualitatively match
experimentally-observed voltage traces of FS cells
and PCs. In particular, we fix the following param-
eters: the capacitance C, resting voltage vR, sodium
reversal potential vNa, and potassium reversal poten-
tial vK at the values shown in Table 1 in the main
text, and vary all other neuron parameters within the
ranges described in Table 4. Then, we choose values
for these parameters within those ranges based on
qualitatively matching voltage traces to experiments.
Note that, due to sensitivity in measuring equipment
and procedural differences in collecting data across
labs, we do not attempt a more quantitative match.
Rather, we demonstrate that our model neurons be-
have similarly to experiments in response to different
external input and reproduce phenomena unique to
GJ-coupled FS cells and EJ-coupled PCs in the adult
cortex.

Table 4: Parameters ranges extracted from experi-
ments [10, 12, 22, 31]. The ranges for the junctional
conductance, gC , were determined from reported val-
ues of the conductance in units of nS and converted
to mS/cm2 using a diameter of 56.9 µm for FS cells
and 96 µm for PCs, as estimated in Ref. [22].

Parameter Range FS cells PCs

gL (mS/cm2) 0.02 – 0.2 0.01 – 0.1

ḡNa (mS/cm2) 30 – 60 30 – 60

ḡK (mS/cm2) 3.9 – 7.0 2.0 – 6.0

VT (mV) -60 – -56 -65 – -50

gC (mS/cm2) 0.0026 – 0.028 0.03 – 0.09

Matching experimental results: FS
Cells

For GJ-coupled FS cortical cells, we use the exper-
imental results from Refs. [10, 11] to determine the
leakage conductance, gL, which controls the sub-
threshold voltage decay back to rest after a depo-
larization or hyperpolarization; the maximal sodium
and potassium conductances, ḡNa and ḡK , respec-
tively, which control the rise and fall of the action
potential, respectively; and the GJ conductance, gC ,
which controls the amount of information that is
transmitted through the junction.

We begin by investigating how the leakage conduc-
tance affects the sub-threshold voltage decay of an FS
neuron after a sub-threshold depolarization and hy-
perpolarization. Note that since the potassium and
sodium channels are essentially closed unless the neu-
ron is firing an action potential, we set ḡNa and ḡK to
zero to investigate sub-threshold effects. The experi-
ments by Galarreta and Hestrin [10, 11] show that a
GJ-coupled FS cell exhibits a decay time of about 50
ms in response to a constant current input for 100 ms
that raises the voltage about ±10 mV from rest for
depolarization and hyperpolarization protocols. To
replicate this experiment in our model, we inject a
constant current to our FS cells of strength Iconst = ±
0.5 mA/cm2. Figure 10A shows the voltage traces of
the FS cell in response to hyperpolarization and de-
polarization for several values of gL, together with a
table of decay times for each value.

We fix the leakage conductance at gL = 0.1
mS/cm2 and, while still considering the neuron’s
sub-threshold behavior, begin to narrow down the
choice for the GJ conductance, gC . Experiments
show that the coupling coefficient (CC), or the ra-
tio of the change in post-junctional voltage to the
change in pre-junctional voltage, for GJ-coupled FS
cells is about 10% [10]. Figure 10B shows the pre-
junctional (solid curves) and post-junctional (dashed
curves) voltage changes for several values of the GJ
conductance, with the resulting coupling coefficient
shown in the corresponding table. Note that several
values of the GJ conductance (gC = 0.01 – 0.015)
yield CC values near 10%. Therefore, we use the
spiking behavior of the cells to further narrow down
this parameter choice.

To match the spiking behavior of FS cells, we use
voltage traces measured in Ref. [31]. In the model,
three parameters control the action potential shape:
the spiking threshold, vT ; the maximal sodium con-
ductance, ḡNa; and the maximal potassium conduc-
tance, ḡK . We begin with the spiking threshold, vT ,
keeping the sodium and potassium maximal conduc-
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time to rest, for various values of gL. The decay time is calculated as the time it takes for the voltage to
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external drive for these figures is I = ±0.5 mA

tances near their respective averages of 45 mS/cm2

and 5 mS/cm2.

In the experiments, the sub-threshold voltage be-
gins a sharp increase around -45 mV. We mark this
location in our model simulation and look for the
value of vT that gives a sub-threshold increase un-
til around -45 mV and then begins its ascent to the
spike; see Fig. 11A. Experimental traces show that
the spike decreases to about -62 mV and increases to
a height of about 20 mV, giving indicators for our
choices of ḡK and ḡNa, respectively. We mark those
locations in our model simulations, and vary the val-
ues for the sodium and potassium conductances; see
Fig. 11B and C.

To narrow down the choice of the GJ conductance,
we consider the spikelet amplitude, or the height of
the post-junctional voltage increase in response to a
pre-junctional action potential; ; see Fig. 11D. Note
that the experimentally-measured spikelet amplitude
is 1.5 ± 0.2 mV, as reported in Ref. [31]. The final
parameter choices are shown in Table 1 in the main
text.

Reproducing experimental phenomena:
FS cells

In this section, we show that our model, with the
chosen parameters, captures experimental phenom-
ena exhibited by GJ-coupled cortical FS cells. We
note that these parameter choices are not unique and
the results do not vary with reasonable changes in
these parameters.

The phenomena that we choose to replicate are
from the experiments by Galarreta and Hestrin [10]
in which they demonstrate the behavior of two GJ-
coupled FS cells by injecting current into one cell and
observing the effect in the coupled cell. First, Galar-
reta and Hestrin show that GJs act as low-pass filters,
preferentially transmitting low-frequency signals, by
injecting a sine-wave current into the pre-junctional
cell and showing that the CC of the post-junctional
cell decreases as the frequency of the sinusoidal input
increases. They also demonstrate that the spikelet in
the post-junctional cell exhibits a phase lag that in-
creases with increasing input frequency. In response
to a sinusoidal input, our model captures this phe-
nomenon as well; see Fig. 12A. In response to in-
creasing frequency, our model behaves similarly to
experiments, with an increase in phase lag, and de-
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Figure 11: Action-potential model replications for FS cells. A: Model action potential shape for various
values of the spiking threshold, vT . The orange dotted line denotes the experimentally-estimated threshold.
B-C: Action potential shapes as a result of various values of the maximal potassium conductance, ḡK ,
and the maximal sodium conductance, ḡNa, respectively. The orange dotted line in B and C denotes the
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constant current input and the resulting spikelets in the post-junctional cell, together with a table of the
spikelet amplitude, for various values of gC . The constant current input used here is I = 3.0 mS/cm2.
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crease in coupling coefficient, as frequency increases;
see Fig. 12B. Note that the frequency at which these
curves cross occurs near the same location as in the
experiments.

Galarreta and Hestrin [10, 11] also demonstrated
that a high-frequency train of action potentials in the
pre-junctional cell is transmitted as a short summa-
tion of spikelets in the post-junctional cell when the
post-junctional cell is hyperpolarized to a value below
the resting potential. Our model qualitatively repro-
duces this phenomenon as well; see Fig. 12C. Finally,
Galarreta and Hestrin demonstrate that there is a
delay between the peak of the action potential in the
pre-junctional cell and the peak of the spikelet in the
post-junctional cell, which our model reproduces in
Fig. 12D.

Matching experimental results: Pyra-
midal Cells (PCs)

We utilize similar techniques as in the previous sec-
tion for a pair of PCs coupled by an EJ with the aim
of replicating experimental data described by Wang
et al. [31]. We begin again with the sub-threshold
dynamics by setting both ḡNa and ḡK to 0 and con-
sidering different values for the leakage conductance,
gL. Experiments show that PCs have a decay time for
sub-threshold voltage of about 200 ms in response to
a hyperpolarization and depolarization of about ±20
mV. We perform a similar task in our model neuron;
see Fig. 13A.

Experiments show that EJ-coupled PCs have a CC
of about 60%. Therefore, we vary the EJ conduc-
tance, gC , and show that there are several values of
the conductance for which the coupling coefficient is
near 60%; see Fig. 13B. Wang et al. [31] also mea-
sured very little dependence of the EJ conductance
on the membrane potential of either cell, which can
be demonstrated by calculating the amplitude of the
pre-junctional and post-junctional voltage difference
from rest at several different values of the membrane
potential. Our model reconstructs this independence
of the junctional conductance on membrane poten-
tial as well, and we calculate the slope of the line; see
Fig. 13C (0.8 as measured experimentally). As in the
case of FS cells, we use the spiking behavior of PCs
to narrow down the choice for the EJ conductance.

Next, we consider the spiking dynamics of a pair
of EJ-coupled PCs. First, observe that action poten-
tials have a different shape in response to a constant
current input as compared to a 20-Hz spike train,
as shown in Ref. [31]. Therefore, we consider both
types of input and use characteristics of the action
potentials generated in each case to determine val-

ues for vT , ḡNa, and ḡK . Note that to simulate a
spike train, we input constant-current step pulses into
the pre-junctional cell at a particular frequency such
that the pre-junctional cell fires one spike per current
pulse. We do not include any stochasticity in these
matching experiments.

The spiking threshold is chosen by considering the
voltage at which the action potential begins its as-
cent in response to a constant-current input, as shown
by the orange dotted line in Fig. 14A (top), and a
high voltage of the tail of the action potential in re-
sponse to a 20-Hz spiking input, as shown in Fig. 14B
(bottom). The maximal sodium and potassium con-
ductances, ḡNa and ḡK , respectively, are chosen by
matching spiking dynamics in the 20-Hz spike-train
case with the aim of obtaining a very fast rise and a
slow decay, as was observed experimentally by Wang
et al. [31].

We choose the conductance of the EJ by matching
the spikelet amplitude of 14 mV as measured exper-
imentally. Notice that an EJ conductance value of
0.08 mS/cm2 gives a spikelet amplitude of 15 mV, and
is within reason with respect to the sub-threshold dy-
namics (recall Figs. 13B and C). The final parameter
set is shown in Table 1 in the main text.
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Figure 12: Reproducing experimentally-observed phenomena for FS cells. A: Voltage responses in pre-
(black) and post- (blue) junctional cells due to a sinusoidal input to the pre-junctional cell. The left axis
describes the pre-junctional voltage, while the right axis shows the post-junctional voltage. B: The frequency
dependency of the coupling coefficient (open squares) and phase lag (closed circles) for GJ-coupled cells. C:
Action potentials in the pre-junctional cell (black) result in a short summation of spikelets in the post-
junctional cell (blue) if the membrane potential of the post-junctional cell is hyperpolarized to a value below
the resting potential (-72 mV in the model). D: Superimposed action potential from the pre-junctional cell
(black) with the spikelet of the post-junctional cell (blue). Axes labels are color coded for which curve they
represent.

Reproducing experimental phenomena:
PCs

We show that our model of two EJ-coupled PCs cap-
tures experimental phenomena observed by Wang et
al. [31], including responses to high frequency stim-
uli and spikelet summation. Due to the high junc-
tional conductance, Wang et al. [31] recorded that
spikelets in the post-junctional cell sum to thresh-
old in response to a high-frequency (70 Hz) stimu-
lation of action potentials in the pre-junctional cell.
Our model PCs mimic this behavior in response to
a 70-Hz input stimulus; see Fig. 15A. To quantify
this summation, Wang et al. [31] calculated a sec-
ond summation rate, the ratio of the difference in
height between the second and the first spikelet to the
height of the first spikelet. Wang et al. [31] showed
that, across all measured EJ-coupled PC pairs, this
second-summation rate increases with an increase in
stimulation frequency to the pre-junctional cell. Our
model also shows this increase in summation rate;
see Fig. 15B. In addition, experiments indicate that
the amplitude of the post-junctional spikelet has very

little dependence on the membrane potential of the
post-junctional cell. Our model replicates this small
dependence of the spikelet amplitude on the mem-
brane potential of the post-junctional cell, with a
slightly higher spikelet amplitude than experimen-
tally observed in all cases; see Fig. 15C.

Action potentials in the pre-junctional cell result
in spikelets in the post-junctional cell with an am-
plitude of about 14 mV, recall Fig. 14C. However,
Wang et al. [31] measured that in response to a 20-
Hz spike train in the pre-junctional cell, the post-
junctional cell will spike about 50% of the time that
the pre-junctional cells spikes. We show that our
model captures this phenomenon; see Fig. 15D for
a few simulated milliseconds. If we run the simula-
tion for 10 seconds and calculate the ratio of number
times an action potential in the post-junctional cell
occurs to the number of times an action potential
in the pre-junctional cell occurs, the result is 54%.
Though Wang et al. did not measure the coupling
coefficient as a function of stimulation frequency, we
use our model to show that EJs behave similarly to
GJs in this respect; see Fig. 15E.
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Figure 15: Replicating experimental phenomena for PCs. A: Model voltage traces in response to a 70 Hz
signal for pre-(black) and post- (red) junctional PCs. B: The second summation spikelet rate – a measure
for the change in height from the first spikelet to the second – as a function of the stimulation frequency to
the pre-junctional neuron for the model pair of PCs. C: The amplitude of the post-junctional spikelet for
different voltages of the post-junctional cell. D: Action potentials in the pre-junctional cell (black, top) in
response to a 20-Hz input and the response in the post-junctional cell (red, bottom) when it is depolarized
to -60 mV. E: The frequency dependency of the coupling coefficient or ratio (open squares) and phase lag
(closed circles) for EJ-coupled PCs. Parameters used to generate these figures are those listed in Table 1,
together with the following values: for A, the constant external input is I = 6 mA and input frequency is
70 Hz; for D, the constant external drive is I = 8 mA and input frequency is 20 Hz; and for E, the constant
external input is I = 10 mA.
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