
Journal of Scientific Computing (2020) 84:10
https://doi.org/10.1007/s10915-020-01261-6

A Combined Offline–Online Algorithm for Hodgkin–Huxley
Neural Networks

Zhong-qi Kyle Tian1 · Jennifer Crodelle2 · Douglas Zhou1

Received: 23 December 2019 / Revised: 29 April 2020 / Accepted: 10 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Spiking neural networks are widely applied to simulate cortical dynamics in the brain and are
regarded as the next generation of machine learning. The classical Hodgkin–Huxley (HH)
neuron is the foundation of all spiking neural models. In numerical simulation, however, the
stiffness of the nonlinear HH equations during an action potential (a spike) period prohibits
the use of large time steps for numerical integration. Outside of this stiff period, the HH
equations can be efficiently simulated with a relatively large time step. In this work, we
present an efficient and accurate offline–online combined method that stops evolving the HH
equations during an action potential period, uses a pre-computed (offline) high-resolution
data set to determine the voltage value during the spike, and restarts the time evolution of
the HH equations after the stiff period using reset values interpolated from the offline data
set. Our method allows for time steps an order of magnitude larger than those used in the
standard Runge–Kutta (RK) method, while accurately capturing dynamical properties of HH
neurons. In addition, this offline–online method robustly achieves a maximum of a tenfold
decrease in computation time as compared to RK methods, a result that is independent of
network size.

Keywords Fast algorithm · Offline–online method · Hodgkin–Huxley · Numerical
simulation

1 Introduction

The Hodgkin–Huxley (HH) model [7,16,18], originally proposed to describe the detailed
generation of action potentials in the squid’s giant axon, is widely used to simulate neural
network dynamics in the neuroscience field [7,16,18]. The HH system characterizes the
evolution of both a neuron’s voltage and its gating variables related to the opening and
closing of ion channels. In practice, numerical simulation of the HH equations generally

B Douglas Zhou
zdz@sjtu.edu.cn

1 School of Mathematical Sciences, MOE-LSC, Institute of Natural Sciences, Shanghai Jiao Tong
University, Shanghai, China

2 Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-020-01261-6&domain=pdf

 10 Page 2 of 23 Journal of Scientific Computing (2020) 84:10

involves the evolution of the ordinary differential equations using standard methods, e.g.,
Runge–Kutta (RK) schemes. However, due to the severe nonlinearities of the system, the
HH equations become very stiff during an action potential period, forcing the use of a small
time step to avoid instability. Often, computational neuroscientists need to simulate many
realizations of a large network of neurons to study network properties or simulate the system
for a long time to obtain steady-state network dynamics [20,51]. These simulations can take
an impractically large amount of time when evolving the system using a standard numerical
scheme with a small time step. Therefore, it is valuable to design fast algorithms that allow
a large time step to numerically evolve the HH system of equations.

One approach that can support the use of a large time step to evolve the HH neural network
was proposed in Ref. [3], based on the exponential time differencing (ETD) method [5,27].
In the previous work, the HH equations are linearly approximated in each time step, and then
analytically solved. The proposed ETD method in Ref. [3] is proven to be unconditionally
stable for HH equations, but it will be inaccurate when using a large time step. Another
approach that supports a large time step is based on the library method [42]. In this reference,
a library is built using stationary information in the regimes of stable periodic firing. However,
neurons driven by stochastic spike input are generally not in the stable periodic state. As a
result, the library method fails to capture certain important characteristics, e.g., the transient
dynamics, Hopf bifurcation point of an HH neuron, and accurate shapes of action potentials
when the neuron is not in a stable periodic state.

In this work, we propose a combined offline–online (COO) method that can overcome
all the above issues related to the previous works. Note that the underlying dynamics that
make the HH equations stiff stem from a large transmembrane current resulting from the
opening and closing of sodium and potassium ion channels. When a neuron fires an action
potential, sodium and potassium ion channels open, causing a transmembrane current with
a maximum value over 250 µA cm−2. This stiff period lasts on average about 3.5 ms, the
duration of an action potential. Then, the HH equations enter a relatively non-stiff state
(small slope) where the transmembrane current is around 5 µA cm−2. During this time, a
large time step in the numerical scheme can be used to accurately resolve the voltage until the
next action potential occurs and the transmembrane current jumps up again. Based on this
observation, our COOmethod simply skips over the duration of an action potential when the
transmembrane current is large. To be specific, when an HH neuron’s membrane potential
reaches a firing threshold, one stops evolving its HH equations and restarts after the stiff
period with reset values interpolated from a pre-computed (offline) high-resolution data set.
Therefore, one can skip the stiff period and use a large time step to evolve the HH equations
to raise efficiency.

We demonstrate through numerical simulations that our COO algorithm can well capture
statistical properties of HH neural networks such as the average firing rate, firing patterns,
and chaotic attractors [1,13,15]. We further give a quantitative efficiency estimation of the
COO method compared with the standard RK method, e.g., the second-order RK (RK2)
method. Importantly, we show that the COOmethod can robustly use a much larger time step
and raise the computational efficiency one order of magnitude over the RK2 method. This
high efficiency does not rely on the dynamical regime, network size, network connectivity
structure, or neuron types such as excitatory and inhibitory. Finally, we provide a detailed
error analysis of the COO method which may give insight about how to set up the offline
data set and improve its performance for certain situations.

Note that the offline data set in this work was constructed using a prototypical set of HH
neuron parameters given in Ref. [8]. For other HH neuron parameters, the action potentials
may have different shapes, and our offline data construction procedure can be easily general-

123

Journal of Scientific Computing (2020) 84:10 Page 3 of 23 10

ized to these cases. In addition, the offline data construction procedure can also be extended
to other HH-type neurons with different ion channels, such as fast-spiking, intrinsically-
bursting, and low-threshold spiking neurons [32]. We emphasize that the high efficiency and
well-captured statistical properties of the COO method with corresponding offline data set
for HH neural network simulations can still be guaranteed.

The outline of the paper is as follows. In Sect. 2, we introduce the HH neuron equations,
including the parameter set used in the construction of the offline data set. In Sect. 3, we
describe the standard RK method used to evolve HH networks. In Sect. 4, we present the
COOmethod, including details on construction and application of the data set. In Sect. 5, we
compare the numerical results obtained by the standard RK method with the COO method
and provide a detailed error analysis of the COO method. Several issues related to the COO
method, e.g., the generalization of the method, are discussed in Sect. 6.

2 TheModel

The dynamics of the i th neuron of an HH network with N excitatory neurons is governed by
the following set of equations

C
dVi
dt

= −(Vi − VNa)GNam3
i hi − (Vi − VK)GKn4i − (Vi − VL)GL + I inputi , (1)

dzi
dt

= (1 − zi)αz(Vi) − ziβz(Vi), for z = m, h, n, (2)

where C is the cell membrane capacitance; Vi is the membrane potential; mi , hi , and ni
are gating variables; VNa, VK , and VL are the reversal potentials for the sodium, potassium,
and leak currents, respectively; and GNa,GK , and GL are the corresponding maximum
conductances. The rate variables α and β are defined in Ref. [8] as

αm(V) = (0.1V + 4)/(1 − exp(−0.1V − 4)), βm(V) = 4 exp(−(V + 65)/18),

αh(V) = 0.07 exp(−(V + 65)/20), βh(V) = 1/(1+ exp(−3.5 − 0.1V)),

αn(V) = (0.01V + 0.55)/(1 − exp(−0.1V − 5.5)), βn(V) = 0.125 exp(−(V + 65)/80).

The input current is given by I inputi = −Gi (t)(Vi −VG)where the conductance is defined
as

Gi (t) = f
∑

l

H(σd , σr , t − sil)+
∑

j

Si j
∑

l

H(σd , σr , t − τ jl), (3)

with VG as the reversal potential and sil as the spike time of the feedforward Poisson input
with strength f and rate ν. The spike-induced conductance change is defined by an alpha
function [14,40]

H(σd , σr , t) =
σdσr

σd − σr

[
exp

(
− t

σd

)
− exp

(
− t

σr

)]
Θ(t), (4)

where σd and σr are the slow decay and fast rise time scale, respectively, and Θ(·) is the
Heaviside function. Si j is the coupling strength from the j th neuron to the i th neuron and
τ jl is the lth spike time of the j th neuron. We take the parameters as in Ref. [8] that C =
1 µF cm−2, VNa = 50 mV, VK = −77 mV, VL = −54.387 mV, GNa = 120 mS cm−2,
GK = 36mS cm−2,GL = 0.3mS cm−2 and VG = 0mV. Time constants are set as σr = 0.5
ms and σd = 3.0 ms.

123

 10 Page 4 of 23 Journal of Scientific Computing (2020) 84:10

When the voltage Vi reaches the firing threshold, V th, we say the i th neuron fires a spike
at this time. Instantaneously, all of its postsynaptic neurons receive this spike and the affected
change of conductance follows Eq. (4). For the sake of simplicity, we here consider an all-
to-all connected network of excitatory neurons with Si j = S/N . However, the conclusions
shown in this work hold for more complicated situations, e.g., networks of both excitatory
and inhibitory neurons with more realistic connectivity, such as, a network in which the
coupling strength follows the typical log-normal distribution [19,41].

3 Runge–Kutta Method

We first introduce the standard RK2 method with a fixed time step ∆t [45] for the numerical
evolution of the HH neural network. For the ease of illustration, we define the vector

Xi (t) = [Vi (t),mi (t), hi (t), ni (t),Gi (t)] (5)

to represent all dynamic variables of the i th neuron in the above HH network model.
Consider the evolution of the HH network from t0 to t0 + ∆t . Since we do not know if

any neuron spiked within the time step until the end of the time step, we evolve the network
without considering the input of those synaptic spikes and recalibrate their influence at the
end of the time step. The feedforward input in the time step are treated in the same way. If
any neuron spiked within this time step, say neuron i , the spike time is estimated by a linear
interpolation

tspike =
V th − Vi (t0)

Vi (t0 + ∆t) − Vi (t0)
∆t + t0 (6)

to maintain an overall second-order numerical accuracy [14,24,37]. The conductance of each
neuron before recalibration is evolved by

G̃i (t0 + ∆t) = f
∑

sil≤t0

H(σd , σr , t0 + ∆t − sil)+
∑

j

S
N

∑

τ jl≤t0

H(σd , σr , t0 + ∆t − τ jl),

(7)

and should be recalibrated as

Gi (t0 + ∆t) = G̃i (t0 + ∆t)+ f
∑

t0<sil≤t0+∆t

H(σd , σr , t0 + ∆t − sil)

+
∑

j

S
N

∑

t0<τ jl≤t0+∆t

H(σd , σr , t0 + ∆t − τ jl), (8)

for i = 1, 2, ..., N . The procedure of the RK2 method is given in Algorithm 1.

123

Journal of Scientific Computing (2020) 84:10 Page 5 of 23 10

330 335 340 345
−100

0

100

200

300

t (ms)

C
ur

re
nt

 (
A

 c
m

−2
)

Intrinsic current
I
input

.

330 335 340 345
−100

−50

0

50

Tstiff

t (ms)

V
 (

m
V

)
(a) (b)

Fig. 1 Typical firing event of an HH neuron in an all-to-all connected network of 128 excitatory neurons using
the RK2 method with ∆t = 0.03125 ms. a The trajectory of voltage V . The black horizontal line indicates the
firing threshold V th and the red vertical lines indicate the stiff period. b The trajectory of the intrinsic current
(blue solid curve) and input current I input (green dashed curve). The intrinsic current is the sum of ionic and
leak currents. The coupling strength is S = 1.2 mS cm−2 (Color figure online)

Algorithm 1: RK2 algorithm
Input: an initial time t0, time step ∆t , feedforward input times {sil}
Output: {Xi (t0 + ∆t)} and {τil} (if any fired)

1 for i = 1 to N do
2 Advance the HH equations for the i th neuron without considering any spike input

using RK2 scheme.
3 if Vi (t0) < V th and Vi (t0 + ∆t) ≥ V th then
4 The i th neuron spiked in [t0, t0 + ∆t].
5 Estimate the spike time by Eq. (6).
6 end
7 end
8 Update the conductance of each neuron by Eq. (8).

4 Combined Offline–OnlineMethod

When a neuron fires an action potential, the HH equations are stiff for about 3.5 ms (the
duration of the action potential), denoted by T stiff and shown in Fig. 1a. This stiff period
requires a sufficiently small time step to accurately resolve the dynamics; however, outside
of this stiff period, the HH equations are relatively non-stiff, as shown in Fig. 1, and the
dynamics can be resolved using a large time step. The idea of the COO method is to pre-
compute a high-resolution (offline) data set of V ,m, h, n during the stiff period such that we
can stop evolving the dynamic variables V ,m, h, n during the stiff period T stiff, and restart
after the stiff period with the values interpolated from this offline data set. Thus we can avoid
evolving the HH equations during the stiff period and use a large time step to evolve the HH
equations outside of the stiff period.

123

 10 Page 6 of 23 Journal of Scientific Computing (2020) 84:10

Fig. 2 The ranges of values mth, hth, nth in terms of I th

4.1 Building Offline Data Set

Wenowdescribe, in detail, themethod bywhichwe build the offline data set.When a neuron’s
membrane potential reaches the firing threshold V th and fires an action potential, we calculate
and record the values I input,m, h, n at that spike time and denote them by I th,mth, hth, nth,
respectively. If we know the exact trajectory of I input for the subsequent stiff period, T stiff,
we can use a sufficiently small time step to evolve Eqs. (1, 2) for T stiff ms with initial values
V th,mth, hth, nth to obtain high-resolution trajectories of V ,m, h, n. The values at the end
of the stiff period (after 3.5 ms) are called the reset values of these variables and are denoted
by V re,mre, hre, nre.

However, it is impossible to obtain the exact trajectory of I input without knowing the future
feedforward and synaptic spike times. As shown in Fig. 1b, I input varies during the stiff period
usually in the range of [−15, 20] µA cm−2, while the intrinsic current, the sum of ionic and
leak currents, is about 20 µA cm−2 at the spike time, and quickly rises to the peak value
about 300 µA cm−2, then quickly drops to the negative value less than − 50µA cm−2 for
the remainder of the stiff period. Clearly the intrinsic current is dominant in the stiff period
and so the variation of the I input can be almost ignored in comparison with the intrinsic
current, thus we can regard it as constant during the stiff period to build the offline data set.
We emphasize that this is the only assumption made in the COO method. Then, for a suite
of I th,mth, hth, nth, we can obtain the corresponding suite of V re,mre, hre, nre by evolving
Eqs. (1, 2) for T stiff ms with initial values V th,mth, hth, nth and constant input I input = I th.

To build the suite of threshold values for all variables, we choose NI , Nm, Nh, Nn dif-
ferent values of I th,mth, hth, nth, respectively, equally distributed in their ranges. For each
combination of I th,mth, hth, nth, we evolve the Eqs. (1, 2) for a time interval of T stiff ms
using the RK2methodwith a sufficiently small time step, e.g.,∆t = 1×10−6 ms. During this
stiff period, as mentioned before, we take a constant input current; specifically, we assume
that I input = I th.

In this work, we take the ranges [0, 50] µA cm−2, [0, 0.3], [0.2, 0.6], and [0.3, 0.6] for
I th,mth, hth, nth, respectively, with sampling intervals of∆I = 2.5 µA cm−2, ∆m = ∆h =
∆n = 0.02. This corresponds to sample numbers NI = 21, Nm = 16, Nh = 21, Nn = 16.
The full suite of values for I th,mth, hth, nth is shown in Fig. 2. This offline data set is built
with a total size of 8NI NmNhNn possible combinations of values for the neuron variables
and occupies only 7 megabytes of data in binary form, a small amount of space for today’s

123

Journal of Scientific Computing (2020) 84:10 Page 7 of 23 10

computers. Note that this data set only records the threshold and reset values, but not the
whole trajectory of the action potential. However, we point out that the whole trajectory of
an action potential can still be well recovered if the voltage traces computed from the suite
of above dynamic variables are recorded. When including voltage traces in the second data
set, its size becomes much larger: NI NmNhNn(4 + T stiff/δt), where δt is the time interval
to record the voltage traces and can be much larger than the sufficiently small time step ∆t
in evolving, e.g., δt = 0.02 ms while ∆t = 1 × 10−6 ms in this work.

One important obstacle in building the offline data set is to choose a proper firing threshold
value V th. The firing threshold should be low enough such that the HH equations can be
numerically evolved using a large time step, but high enough that a neuronwill definitely spike
after its membrane potential reaches the firing threshold. In this work, we take V th = −50
mV. Correspondingly, we take the length of stiff period T stiff = 3.5 ms according to the
dynamics of HH system in Eqs. (1, 2), which is long enough to cover all stiff parts of the
resulting action potential from normal firing events. Note that, with changes in the neuron
parameters such as the leak conductance and reversal potential, these values might also need
to be changed to account for different dynamics in the neuron’s behavior.

4.2 Using the Offline Data Set

Next, we illustrate how to implement the COOmethod. Once a neuron’s membrane potential
exceeds the firing threshold V th for the time step from t0 to t0 + ∆t , we compute the values
of I th,mth, hth, nth at the threshold using linear interpolation:

zth = z(t0 + ∆t) − z(t0)
∆t

(tspike − t0)+ z(t0), for z = I ,m, h, n, (9)

where the spike time, tspike, is estimated by linear interpolation as shown in Eq. (6). Then,
we stop evolving V ,m, h, n for the following T stiff ms and calculate the reset values of these
variables V re,mre, hre, nre at tspike + T stiff ms using the threshold values I th,mth, hth, nth.
Note that since it is unlikely that the computed threshold values from Eq. (9) are exactly
those that were used to build the data set, we can perform a linear interpolation from the pre-
computed high-resolution data set. For example, suppose that I th falls between twodata points
I th0 and I th1 in the data set, butmth, hth, nth are exactly the sample pointswhen building the data
set. Then, the reset values zre can be approximated by a linear combination of the reset values
that result from the data points in data set on either side of the calculated threshold value,
weighted by the difference between the calculated threshold value and each data set value:

zre =
(
I th − I th1
I th0 − I th1

)

zre(I th0 ,mth, hth, nth)

+
(
I th − I th0
I th1 − I th0

)

zre(I th1 ,mth, hth, nth), for z = V ,m, h, n.

By extension, when mth falls between the data points mth
0 and mth

1 , h
th between hth0 and hth1 ,

and nth between nth0 and nth1 , we can approximate the reset values in the same way:

zre =
∑

i, j,k,l=0,1

(
I th − I th1−i

I thi − I th1−i

mth − mth
1− j

mth
j − mth

1− j

hth − hth1−k

hthk − hth1−k

nth − nth1−l

nthl − nth1−l

)

zre(I thi ,mth
j , h

th
k , n

th
l)

(10)

123

 10 Page 8 of 23 Journal of Scientific Computing (2020) 84:10

415 420 425 430
−100

−50

0

50

t (ms)

V
 (

m
V

)

Neuron 1
Neuron 2

424.5 425.5

−75

t (ms)

V
 (

m
V

)

421 422

−50

t (ms)

V
 (

m
V

)
(a) (c)(b)

Tstiffinterpolation
small time step

Fig. 3 Illustration of the COO method for two sample neurons, say neuron 1 and neuron 2. a Estimating the
spike time of neuron 1 through linear interpolation. b After neuron 1 fires an action potential, we record the
values I th,mth, hth, nth, stop evolving its V ,m, h, n for the following T stiff ms, and restart with the values
V re,mre, hre, nre interpolated from the data set. The blue (for neuron 1) and green (for neuron 2) dots indicate
the time nodes where we use the standard RK2 scheme while the gray circles indicate the time nodes that we
only evolve the conductance G. The gray curve represents the shape of the action potential that is recovered
using the second data set of voltage traces. c The end of the stiff period may be in the middle of the original
time step and we evolve it with a suitably small time step to obtain the values of all dynamic variables at the
end of the RK2 time step (Color figure online)

for z = V ,m, h, n. Figure 3a demonstrates how the COO method uses interpolation to find
the spike time, while Fig. 3b shows how one skips the evolution of HH equations during the
stiff period. The shape of the action potential as shown in gray in Fig. 3b is missing if one is
not interested in the spike shape. Otherwise, it can be recovered through linear interpolation
of values from the data set with recorded voltage traces as discussed previously.

We evolve the conductance G analytically during the stiff period by Eq. (3). Note that,
when we begin to evolve the dynamic variables for this neuron at the end of the stiff period,
it may be the case that we are in the middle of a time step. In this case, we use a suitably
small time step, as illustrated in Fig. 3c, to ensure that the conductance and neuron variables
are back on the same time-stepping scheme. Then, we can return to a large time step using
the standard RK2 scheme to evolve all of the dynamic variables. The procedure of the COO
algorithm is given in Algorithm 2.

Algorithm 2: Combined offline–online algorithm
Input: an initial time t0, time step ∆t , feedforward input times {sil}
Output: {Xi (t0 + ∆t)} and {τil} (if any fired)

1 for i = 1 to N do
2 Advance the HH equations for the i th neuron without considering any spike input

using RK2 scheme.
3 if Vi (t0) < V th, Vi (t0 + ∆t) ≥ V th then
4 The i th neuron spiked in [t0, t0 + ∆t].
5 Estimate the spike time by Eq. (6).
6 Calculate the threshold values by Eq. (9).
7 Obtain the reset values by Eq. (10).
8 Stop evolving Vi ,mi , hi , ni during the stiff period.
9 Evolve the i th neuron using a suitably small time step as illustrated in Fig. 3c.

10 end
11 end
12 Update the conductance of each neuron by Eq. (8).

123

Journal of Scientific Computing (2020) 84:10 Page 9 of 23 10

5.9 6 6.1 6.2 6.3
0

2

4

6

8

10

12

Iinput

S
pi

ke
s

RK2: dt=0.03125
COO: dt=0.25

5 5.5 6 6.5 7 7.5 8
0

10

20

30

40

50

60

70

Iinput

F
iri

ng
 r

at
e

(H
z)

RK2: dt=0.03125
COO: dt=0.25

(a) (b)

Fig. 4 a The firing rate of an individual HH neuron as a function of constant input I input (µA cm−2) for a
total run time of 10 s which is sufficiently long for the neuron to converge to the stationary state. b The number
of spikes during the transient period (200 ms) with initial voltage V = −65 mV. The blue squares and red
circles in a and b indicate the results using RK2 method with ∆t = 2−5 = 0.03125 ms and the COO method
with a much larger time step ∆t = 0.25 ms, respectively (Color figure online)

5 Numerical Results

5.1 Transient Dynamics and Hopf Bifurcation Point of an Individual HH Neuron

In this section, we first demonstrate the performance of the COO method for an individual
HH neuron. As described above, we build the data set using dynamic information that covers
almost all possible combinations of threshold values observed in general spiking events. Thus,
the COOmethod is expected to capture the transient dynamics and the Hopf bifurcation point
of an individual HH neuron with a relatively small error. A single neuron driven by constant
input can fire regularly and periodically [11,21] only when the input current is greater than
a critical value, I input ≈ 6.2 µA cm−2 (type II behavior). The neuron has a sudden jump
near this critical value from no firing to regular firing at a nonzero firing rate because of a
subcritical Hopf bifurcation [9,21,36], as demonstrated in Fig. 4a. Below the critical value,
some spikes may appear before the neuron converges to a stationary quiescent state. The
number of spikes during this transient period depends on how close the constant input is to
the critical value as shown in Fig. 4b. Our offline data set built with dynamic information
is sufficiently accurate such that our COO method can well capture the transient dynamics
and the Hopf bifurcation point even with a time step that is 8 times greater than that used in
the RK2 method. Note that we use a maximum time step of about ∆t = 0.03125 ms for the
RK2 method under the constraint of the dynamic stability of the numerical scheme as shown
later in Table 1. We should point out that when the constant input is sufficiently large (over
155 µA cm−2), the neuron will converge to a stationary quiescent state. However, such large
input is often beyond the physiological range and is not discussed in this work.

Since our offline data set and the second data set of voltage traces are very accurate, the
COO method can also achieve accurate trajectories of membrane potentials, especially the
shapes of action potentials. To show this, we drive an individual HH neuron by a Poisson
spike train and evolve it for a long time (over 10 s). As shown in Fig. 5, the COO method
with a large time step can achieve accurate trajectories of the membrane potential compared
with the RK2 method using a sufficiently small time step ∆t = 1 × 10−6 ms.

123

 10 Page 10 of 23 Journal of Scientific Computing (2020) 84:10

Table 1 Simulation of the all-to-all connected excitatory network with S = 0.3 mS cm−2 for a total run time
T = 10 s

RK2 COO

∆t (ms) CPU (s) Largest λ Relative error (%) CPU (s) Largest λ Relative error (%)

2−7 91.61 −0.050 0 86.95 −0.050 0

2−6 45.92 −0.050 0 44.11 −0.050 0

2−5 22.77 −0.050 0 21.54 −0.049 0

2−4 *** *** *** 10.96 −0.049 0

2−3 *** *** *** 5.49 −0.049 0.083

2−2 *** *** *** 2.83 −0.048 0.33

0.314 *** *** *** 2.16 −0.048 0.50

The relative error is in the mean firing rate between each method and the RK2 method using a sufficiently
small time step *t = 1 × 10−6 ms. Asterisks for the RK2 method indicate overflow errors

10000 10100 10200 10300 10400 10500
−80

−60

−40

−20

0

20

40

t (ms)

V
 (

m
V

)

RK2
COO

Fig. 5 A comparison of the trajectory of V obtained from the RK2 method with ∆t = 1 × 10−6 ms (blue
solid curve) and the COOmethod with linear interpolation and∆t = 0.25 ms (red dashed curve) (Color figure
online)

5.2 Lyapunov Exponent

Wenow demonstrate the performance of the COOmethod for an all-to-all connected network
of N = 128 excitatory neurons. For simplicity, we fix the feedforward input parameters at
f = 0.1 mS cm−2, ν = 100 Hz, and keep the coupling strength S as the only remaining
parameter that can be varied. The concepts described in this section can be easily extended
to other types of HH networks and other dynamical regimes.

We first study the chaotic dynamical property of the HH network by computing the largest
Lyapunov exponent, one of the most important tools used to characterize dynamical stability
[28]. Given a sufficiently small initial perturbation in the state of each neuron (V ,m, h, or
n), the Lyapunov exponents can measure the average rate of divergence or convergence of
the reference (unperturbed) and the perturbed trajectories of the HH network [29,30,44]. A
positive largest Lyapunov exponent signifies a chaotic system, while a negative one signifies
a non-chaotic system.

To calculate the largest Lyapunov exponent, we denoteX = [X1, X2, ..., XN] to represent
all of the variables of all of the neurons in the HH model, where Xi indicates the state
(Vi ,mi , hi , ni , and conductance Gi) of the i th neuron, as previously described in Eq. (5)
for one neuron. Let the reference and perturbed trajectories be denoted by X(t) and X̃(t),
respectively. Then, the largest Lyapunov exponent is defined by

123

Journal of Scientific Computing (2020) 84:10 Page 11 of 23 10

0 0.5 1 1.5
−5

−4

−3

−2

−1

S

lo
g 10

(R
el

at
iv

e
E

rr
or

)

COO: dt=0.25
COO: dt=0.314

0 0.5 1 1.5
10

20

30

40

50

S

F
iri

ng
 r

at
e

RK2: dt=0.03125
COO: dt=0.25
COO: dt=0.314

0 0.5 1 1.5
−0.1

−0.05

0

0.05

0.1

S

Ly
ap

un
ov

 e
xp

on
en

t

RK2: dt=0.03125
COO: dt=0.25
COO: dt=0.314

(a) (c)(b)

Fig. 6 a The largest Lyapunov exponent of the HH network versus the coupling strength S. bMean firing rate
of the network versus the coupling strength S. c The relative error in the mean firing rate between the COO
method and the RK2 method versus the coupling strength S. The blue squares, green circles, and red crosses
represent the results using the RK2 method with ∆t = 2−5 = 0.03125 ms, the COO method with a time
step of ∆t = 0.25 ms and with the maximum time step of ∆t = 0.314 ms, respectively. The vertical dashed
lines indicate the values of S in which the network is in a chaotic regime. The total run time is 60 s to obtain
convergent statistical properties of the HH network (Color figure online)

λ = lim
t→∞ lim

ε→0

1
t
ln

||X̃(t) − X(t)||
||ε|| (11)

where ε is the initial separation between the two trajectories. However, we cannot use Eq. (11)
to compute the largest Lyapunov exponent directly, because the ratio ||X̃(t)−X(t)||/||ε|| is
unbounded as t → ∞, arising from the exponential decay or growth rates of the principal
axes of the ellipsoid [29], and it will make the numerical computation ill-conditioned. The
standard algorithm to compute the largest Lyapunov exponent for continuous systems can
be found in Refs. [30,47,50]. Since, for the COO method, the values of V ,m, h, n are not
numerically evolved during the stiff period, the standard algorithms to compute the largest
Lyapunov exponent will not work. To circumvent this difficulty, we compute the largest
Lyapunov exponent using the algorithm in Ref. [49] proposed for discontinuous systems.

We compute the largest Lyapunov exponent as a function of the coupling strength, S,
ranging from 0 to 1.5 mS cm−2 using the RK2 and COOmethods. The total run time T is 60
s, which is sufficiently long to yield convergence of the largest Lyapunov exponent. As shown
in Fig. 6a, the COO method with large time steps can obtain accurate estimations for the
largest Lyapunov exponent compared with the RK2method with a small time step. As shown
in Fig. 6b, we compute the mean firing rate, denoted by R, and show that the COO method,
with two different time steps, can accurately reproduce the average firing rate as observed in
the network using the RK2method with a small time step. In Fig. 6c, we compute the relative
error in the mean firing rate between the RK2 method and the COO method, defined as

ER = |RCOO − RRK2|/RRK2, (12)

where the subscript “COO” and “RK2” represent the COO and RK2 methods, respectively.
The COO method using a large time step of ∆t = 0.25 ms and a maximum time step of
∆t = 0.314 ms can both achieve at least 2 digits of accuracy for the non-chaotic regimes.

The largest Lyapunov exponent determines that the system is chaotic for 0.55 ! S ! 0.9
mS cm−2, as shown by the vertical dashed lines in all three plots of Fig. 6, and that the system
is non-chaotic for 0 ≤ S ! 0.55 and 0.9 ! S ≤ 1.5 mS cm−2. Thus, there are three typical
dynamical regimes that occur in the HH model network: a low-firing, asynchronous regime
as shown in Fig. 7a, a medium-firing, chaotic regime as shown in Fig. 7b, and a high-firing,
synchronous regime as shown in Fig. 7c. We choose three coupling strengths within each

123

 10 Page 12 of 23 Journal of Scientific Computing (2020) 84:10

500 600 700 800
0

50

100

S=1.2

t (ms)

N
eu

ro
n

In
de

x

500 600 700 800
0

50

100

S=0.7

t (ms)

N
eu

ro
n

In
de

x

500 600 700 800
0

50

100

S=0.3

t (ms)

N
eu

ro
n

In
de

x
(a) (c)(b)

Fig. 7 Raster plots of firing events in three typical dynamical regimes with coupling strength a S = 0.3, b S
= 0.7, c S = 1.2mS cm−2

−4 −3 −2 −1
−8

−6

−4

−2

0

2

4

log
10

(t)

lo
g 10

(E
rr

or
)

S=0.3
S=0.7
S=1.2
Second order

−4 −3 −2 −1
−8

−6

−4

−2

0

2

4

log
10

(t)

lo
g 10

(E
rr

or
)

S=0.3
S=0.7
S=1.2
Second order

(a) (b)

Fig. 8 Convergence tests for the a RK2 method and b COO method. The convergence tests are performed
by evolving the HH network for a total run time of T = 2000 ms. We show the results for the coupling
strength S = 0.3 (blue), 0.7 (green), and 1.2 (red) mS cm−2, respectively. The black line indicates a scaling
with exponent 2 (Color figure online)

regime, S = 0.3, 0.7, and 1.2 mS cm−2, to represent these three typical dynamical regimes,
respectively, and discuss the issue of numerical convergence in the following simulations.

5.3 Convergence Tests

In this section, we verify the second-order numerical accuracy of the RK2 and the COO
methods by performing convergence tests. We use a sufficiently small time step of ∆t =
1 × 10−6 ms to evolve the HH neural network by the RK2 (COO) method to obtain a high-
precision solution Xhigh at the end time of T = 2000 ms for the RK2 (COO) method. To
calculate the convergence and the order of numerical accuracy, we also compute the solution
X(∆t) using a variety of time steps∆t = 2−4, 2−5, ..., 2−12 ms by theRK2andCOOmethods.
The numerical error is measured in the L2-norm as follows

E = ||X(∆t) − Xhigh||. (13)

As shown in Fig. 8, both the RK2 and the COOmethods can achieve second-order numer-
ical accuracy for the non-chaotic regimes S = 0.3 and 1.2 mS cm−2. As expected, for the
chaotic regime in which S = 0.7 mS cm−2, a convergent numerical solution can not be
achieved.

123

Journal of Scientific Computing (2020) 84:10 Page 13 of 23 10

5.4 Computational Efficiency

We next demonstrate the computational efficiency of the COO method. Table 1 shows some
timing results obtained onVisual Studio using an Intel i7 2.6GHz processor. TheRK2method
can achieve high accuracy for a numerically stable time step, though the allowed maximum
time step size is relatively small. The COO method can achieve accurate largest Lyapunov
exponents and mean firing rates using various values of time steps compared with the RK2
method using a very small time step. Thus, the efficiency of the COO method relies on the
number of evolved time steps given that it can obtain accurate statistical properties of HH
neurons.

A straight forward way to measure the efficiency is to compare the real simulation time
that it takes for a computer to evolve the network to a common final run time for eachmethod.
We denote this efficiency by κtime and define it as the ratio of time for the RK2 method to
the time for the COO method as follows

κtime = T̂RK2/T̂COO, (14)

where T̂RK2 and T̂COO represent the real simulation time that the RK2 and COO methods
take to evolve the network, respectively.

To analytically estimate the efficiency of the COO method, we compute efficiency using
another measure, the number of calls to the numerical scheme. Since both the RK2 and COO
methods are based on the standard RK2 scheme, we can compare the number of times the
standard RK2 scheme is called by each method. For the RK2 method, the call number per
neuron is T /∆tRK2, where ∆tRK2 is the time step used in the RK2 method and T is the total
run time. For the COO method, when a neuron fires a spike, we stop evolving its V ,m, h, n
variables for the following stiff period, T stiff, and then, once we’re out of the stiff period, we
take a small time step to evolve the system back to the original time-stepping scheme (recall
Fig. 3c). To approximate the call number for the COO method we take the total number of
calls to the RK2 scheme for each neuron, T /∆tCOO, where ∆tCOO is the time step used in
the COO method, and subtract the average time that each neuron spends in the stiff period
(since there are no calls to the RK2 scheme during this time), T · R · T stiff, where R is the
average firing rate of the network. Therefore, the approximate call number per neuron for the
COOmethod is (T −T · R ·T stiff)/∆tCOO+T · R, where T · R represents the call to the RK2
scheme using a small time step when the neuron leaves the stiff period (recall Fig. 3c). Then
the efficiency of the COO method estimated by call number, denoted by κnum, is defined as
the ratio of the call number of the RK2 method to the call number of the COO method as
follows

κnum ≈ T /∆tRK2
(T − T · R · T stiff)/∆tCOO + T · R = ∆tCOO

(1 − T stiff · R + ∆tCOO · R)∆tRK2
.

(15)

Note that the linear interpolation used in the COOmethodmay take a certain small amount
of time while its contribution to the time cost is not included in κnum. Thus, κnum is a bit
overestimated.

In Fig. 9a, we show the efficiency of the COO method as measured by the ratio of the
physical simulation time it takes to run the simulation between the RK2method and the COO
method, κtime, and the ratio of the number of times the RK2 scheme is called in the code
between the RK2method and the COOmethod, κnum.We also use the analytical expression in
Eq. (15) to calculate an approximation to the call number and show that indeed this equation
provides a good estimation of efficiency as measured by the actual call number in the code.

123

 10 Page 14 of 23 Journal of Scientific Computing (2020) 84:10

0 0.5 1 1.5
8

9

10

S

E
ffi

ci
en

cy

Appro
num

num

time

0 0.5 1 1.5
0

2

4

6

8

10

12

S

E
ffi

ci
en

cy

(a) (b)

Fig. 9 a Efficiency of the COO method measured by time cost, κtime, and call number of standard RK2
scheme, κnum for the all-to-all connected excitatory network. The blue crosses, green squares, and red circles
indicate efficiency measured by Eq. (15), the actual call number in the code, and the actual time cost in
the code, respectively. The time steps are ∆t = 2−5 = 0.03125 ms for the RK2 method and ∆t = 0.25
ms for our method. b Efficiency of our COO method measured by the call number with time steps ∆t =
0.314, 0.25, 0.125, 0.0625, 0.03125 ms from top to bottom. Total run time is 50 s (Color figure online)

Notice that the efficiency as measured by the call number is slightly higher than the efficiency
as measured by time cost. This is because when a neuron fires a spike, we call the offline
data set and evolve the conductance G during the stiff period, which takes certain extra time,
but is not included in the efficiency measured by the call number. When the mean firing rate
is high, and the call to the data set increases, this extra time is no longer negligible. Even so,
these two kinds of efficiency still show good agreement and the COO method is much more
efficient than the standard RK2 method as evidenced by the value of the ratio being much
larger than one.

Figure 9b shows the efficiency of the COO method as measured by Eq. (15) for several
different time steps. The COO method can stably achieve high efficiency with a maximum
over 10 times of speedup for a maximum time step of ∆t = 0.314 ms. Note that this high
efficiency is independent of the size of network, structural connectivity, dynamical regimes
or networks with both excitatory and inhibitory neurons, since Eq. (15) mainly relies on the
ratio of time steps between the RK2 and the COO methods.

5.5 Network Firing Patterns

In this section, we show that the COOmethod can accurately capture different firing patterns
elicited by networks of neurons. The information that is communicated by a neural network
is realized through the firing patterns of the network [17,26,43]. These firing patterns are
essential in understanding the function of the brain [12,23,38,39] and can be used to infer the
structural connectivity of neural networks [31,33,39,48,51]. To verify that the COO method
can accurately capture the distribution of firing patterns, we randomly choose 10 neurons
from the all-to-all connected network of N = 128 excitatory neurons and record their spike
times. Then, we transform those spike times into a binary time series with a time bin of
10 ms, where the binary data is 1 if there is a spike during the time bin and 0 otherwise.
In this way, the 10 neurons can comprise a 10-dimensional binary vector with a total of
210 = 1024 different kinds of combinations of firing patterns. Then we evolve the network
for a sufficiently long run time and compute the probability of each pattern. This probability

123

Journal of Scientific Computing (2020) 84:10 Page 15 of 23 10

10
−4

10
−2

10
0

10
−4

10
−2

10
0

Probs RK2

P
ro

bs
 C

O
O

S=1.2

p
y=x

10
−4

10
−2

10
0

10
−4

10
−2

10
0

Probs RK2

P
ro

bs
 C

O
O

S=0.7

p
y=x

10
−4

10
−2

10
0

10
−4

10
−2

10
0

Probs RK2

P
ro

bs
 C

O
O

S=0.3

p
y=x

(a) (c)(b)

Fig. 10 Comparison of the distribution of the firing patterns generated by the network simulated using the
RK2 and COO methods with coupling strength a 0.3, b 0.7, and c 1.2 mS cm−2. Time steps are the same as
in Fig. 4. Total run time is 1000 s to obtain convergent probability distributions (Color figure online)

is approximated by counting the number of observations of each pattern over the total number
of patterns observed in the simulation.

Figure 10 compares the probability of obtaining each pattern using the standard RK2
method with a very small time step with the probability of obtaining each pattern using the
COO method with a large time step. The star in Fig. 10 indicates the probability of finding
the same pattern in the networks generated using each method. If the star lies on the diagonal
line, then the COO method can capture the exact the same probability of the corresponding
pattern as the RK2 method.

To quantitatively characterize the closeness of the above two probability distributions, we
do chi-square two sample tests for the comparison of the distribution of the firing patterns in
the networks simulated using the RK2 and COOmethods.We assume that the null hypothesis
is that the two groups of samples come from a common distribution, then we compute the
test statistics for networks with coupling strengths S = 0.3, 0.7, and 1.2 mS cm−2 and show
that all of these networks have a p-value greater than 0.999. Therefore, the distributions from
the RK2 and COO methods cannot be distinguished in the statistical sense, i.e., the COO
method with a large time step yields a network with almost the same firing patterns as the
network using the RK2 method with a very small time step. We emphasize that even in the
chaotic regime, our COOmethod with a large time step can still capture accurate mean firing
rates and the distribution of firing patterns as shown in Figs. 6b and 10b, respectively.

5.6 Error of Combined Offline–OnlineMethod

In this section, we demonstrate the error of our COO method. There are three kinds of error
that arise in the COO method: error from the numerical approximation of the solution to
the ordinary differential equations, error from the interpolation to use the data set, and error
from the assumption that we keep I input constant throughout the stiff period. The first error
is simply O(∆t2) since the COO method is based on the RK2 scheme. The other two kinds
of error come from using the data set. For simplicity, we consider the error in the voltage for
one single neuron to illustrate the magnitude of all variables

∆V = |VCOO − VRK2|, (16)

where | · | takes the absolute value, the subscript “RK2” indicates the high-resolution solution
computed by the RK2 method with a sufficiently small time step ∆t = 1 × 10−6 ms and
“COO” indicates the solution from the COO method.

123

 10 Page 16 of 23 Journal of Scientific Computing (2020) 84:10

−4 −3 −2 −1 0 1
−15

−10

−5

0

5

log
10

(c)

lo
g 10

(E
rr

or
)

Cubic interpolation

 Vre

 mre

 hre

 nre

Fourth order

−4 −3 −2 −1 0 1
−15

−10

−5

0

5

log
10

(c)

lo
g 10

(E
rr

or
)

Linear interpolation

 Vre

 mre

 hre

 nre

Second order

(a) (b)

Fig. 11 The error of the reset values for a single HH neuron driven by constant input. The error resulting from a
linear interpolation and b cubic interpolation in the COOmethod. The blue squares, magenta diamonds, green
circles, red crosses indicate the error of the reset values V re,mre, hre, nre, respectively. The black line in a and
b indicates a second-order and fourth-order accuracy, respectively. The time step used in these simulations is
∆t = 1 × 10−6 ms (Color figure online)

The error that results from interpolation to find the reset values can be well described by
the error of the reset value ∆V re, comparing the reset value generated by the data set and the
corresponding value computed using the RK2 method. To fairly compare the result from the
RK2 method and COO method, we use a constant input I input to drive a single HH neuron in
both cases. Then, the error from linear interpolation is∆V re = O(∆I 2+∆m2+∆h2+∆n2).
If we first take the sample interval ∆I = 5 µA cm−2, ∆m = ∆h = ∆n = 0.04 and keep
halving them as c∆I , c∆m, c∆h, c∆n for c = 20, 2−1, ..., 2−11, then it is straight forward
that ∆zre = O(c2) for z = V ,m, h, and n as shown in Fig. 11a. In the same way, a cubic
interpolation yields ∆zre = O(c4) for z = V ,m, h, and n as shown in Fig. 11b.

Lastly, we consider the error due to the assumption of constant input during the stiff period.
To do this, we drive a single HH neuron by a Poisson spike train and compare the difference
in the voltage,∆V . The highly precise voltage trace is computed using the RK2 method with
a sufficiently small time step ∆t = 1×10−6 ms. To illustrate the error due to the assumption
of constant input, we also evolve this neuron using the RK2 method with ∆t = 1 × 10−6

ms; But, when the neuron fires an action potential, we set its input as constant I input = I th

for the following T stiff ms. As shown in Fig. 12, once the neuron fires an action potential,
the error due to the assumption of constant input is significantly greater than the error from
both the time step and the order of interpolation to use the data set.

Therefore, the major source of error comes from the assumption of constant input during
the stiff period. It is difficult to reduce this error since the online feedforward and synaptic
spike input is impossible to know in advance. Hence, we use relatively large sample intervals
to reduce the size of the offline data set, choose a linear interpolation to use the data set, and
use a second-order numerical time-stepping scheme to save computational cost. We also find
that the error will not accumulate with the call number of the data set, as shown in Fig. 12,
by the quick decay in error after each spike (call to data set).

6 Conclusion

In conclusion, we have developed a combined offline–online method that accurately and
efficiently evolves a network of HH equations and reproduces the firing patterns that are
typical of three different dynamical regimes. Through use of a pre-computed (offline) high-

123

Journal of Scientific Computing (2020) 84:10 Page 17 of 23 10

200 250 300 350 400 450 500
−15

−10

−5

0

5

10

t (ms)

lo
g 10

(
 V

)

RK2, constant I in T stiff
Linear Interp., t=0.25

Cubic Interp., t=1 106

Fig. 12 The error in voltage, ∆V , for a single HH neuron driven by a Poisson spike train. The highly precise
solution is obtained using the RK2 method with ∆t = 1× 10−6 ms. The blue solid line is the error due to the
constant input assumption during the stiff period using the RK2 method with ∆t = 1 × 10−6 ms. The green
dash-dotted line is the error due to linear interpolation to use the COO method with ∆t = 0.25 ms, while the
red dashed line is the error due to cubic interpolation to use the COO method with ∆t = 1 × 10−6 ms. The
short black lines on the horizontal axis indicate the spike times of the neuron and the black circles indicate
the error in voltage at the end of stiff period (spike time plus T stiff ms), both of which are obtained from the
highly precise solution (Color figure online)

resolution data set, we save computational cost by skipping the numerical evolution of the
HH equations during the stiff period (time during which an action potential occurs) and using
a large time step to evolve the HH equations outside of the stiff period. We point out that
our COO method can be viewed as a numerical reduction of the HH neuron to an integrate-
and-fire (I&F) neuron [25,34,40]. However, our COO method still keeps the original HH
dynamics such as evolution of gating variables and detailed action-potential shapes which
can be well recovered if needed, while these important properties are generally lost in the
I&F neuron. Our method can capture accurate transient dynamics and the Hopf bifurcation
point for an individual HH neuron, as well as chaotic attractors, mean firing rates, and firing
patterns of HH neural networks. Besides, our COO method can also capture accurate action-
potential shapes by using a data set with pre-computed voltage traces, if one has interest in
recovering action-potential shapes. In addition, our COO method can be easily extended to
networks with different properties, e.g., large-scaled or excitatory and inhibitory networks,
while still maintaining high accuracy and efficiency.

COO method with data set of small sizes We emphasize that the main source of error in
the COO method stems from the assumption of constant input current during the stiff period
in building the offline data set. Since it is impossible to have prior knowledge of the future
feedforward and synaptic spike times before evolving, it is difficult to refine this assumption
to reduce the error of data set. Therefore, it is suitable to use relatively large sample intervals
to build a small data set, use a linear interpolation to use the data set, and evolve with a
second-order numerical scheme. As shown in Fig. 13, the COO method with a coarse data
set built using very few sample numbers NI = 3, Nm = 3, Nh = 3, Nn = 3 can accurately
capture the statistical properties of HH networks, such as the largest Lyapunov exponents and
mean firing rates for both the chaotic and non-chaotic dynamical regimes. This is because
the trajectory of an HH neuron is highly contracted at the time when the neuron is out of
the spike period and the reset values have very small fluctuations as shown in Fig. 14. The
COO method still has relatively high accuracy when using the coarse data set to perform
interpolations for dynamical variables. However, the recovery of the action potential shape

123

 10 Page 18 of 23 Journal of Scientific Computing (2020) 84:10

0 0.5 1 1.5
−0.1

−0.05

0

0.05

0.1

S

Ly
ap

un
ov

 e
xp

on
en

t RK2
COO:NI=41
COO:NI=3

(a)

0 0.5 1 1.5
10

20

30

40

50

S

F
iri

ng
 r

at
e

RK2
COO:NI=41
COO:NI=3

(b)

Fig. 13 Numerical performance of the COO method using an offline data set of different sizes. a The largest
Lyapunov exponent of the HH network versus the coupling strength S. b Mean firing rate of the network
versus the coupling strength S. The blue squares, green circles, and red crosses represent the results using
the RK2 method with ∆t = 2−5 = 0.03125 ms, the COO method using offline data set built with sample
numbers NI = 41, Nm = 31, Nh = 41, Nn = 31 (∆I = 1.25 µA cm−2, ∆m = ∆h = ∆n = 0.01) and that
with sample numbers NI = 3, Nm = 3, Nh = 3, Nn = 3 (∆I = 20 µA cm−2, ∆m = ∆h = ∆n = 0.16),
respectively. The vertical dashed lines indicate the values of S for which the network is in a chaotic regime.
The time step for the COO method is ∆t = 0.25 ms and the total run time is 60 s (Color figure online)

0 1 2 3 4
−100

−50

0

50

t (ms)

V

0 1 2 3 4
0.2

0.4

0.6

0.8

1

t (ms)

n

0 1 2 3 4
0

0.2

0.4

0.6

0.8

t (ms)

h

0 1 2 3 4
0

0.5

1

t (ms)

m

(a)

(c)

(b)

(d)

Fig. 14 Typical trajectories of a V , b m, c h, and d n during the spike period

during the spike period requires a dense data set since one can clearly observe that the voltage
traces shown in Fig. 14a are scattered.

The interval of the stiff period in the COO method When building the offline data set, it is
important to choose a proper time interval for the stiff period (duration of action potential).
The stiff period should cover all stiff parts of the dynamical variables and be determined by
the dynamics of the HH model. As shown in Fig. 14a, the choice of 3.5 ms as the stiff period
is appropriate. However, if the parameters in the HH model are changed, the interval of the
stiff period should also be changed to account for different dynamics of the HH model.

COO method for gap-junctionally coupled networks We should point out that accurate
action-potential shapes are important in some situations, e.g., for the electrically coupled neu-
rons. Such coupling exists among local inhibitory neurons and occurs through gap junctions

123

Journal of Scientific Computing (2020) 84:10 Page 19 of 23 10

0 0.1 0.2 0.3 0.4
14

16

18

20

22

g
C

F
iri

ng
 r

at
e

RK2:dt=0.03125
COO:dt=0.25

250 260 270 280 290 300
−100

−50

0

50

t (ms)

V

RK2:dt=0.03125
COO:dt=0.25

(a) (b)

Fig. 15 Consider an all-to-all connected HH network of 80 excitatory and 20 inhibitory neurons with electrical
couplings. aA comparison of the voltage trajectory of a randomly chosen inhibitory neuron. bMean firing rate
of the network versus the electrical coupling strength gC . The value range of gC is chosen from experimental
data [10,46] and numerical simulation works [6,22]. The blue curve indicates the results obtained from the
RK2 method with ∆t = 0.03125 ms, while the red curve indicates the results obtained from the COOmethod
with data set built using sample numbers NI = 21, Nm = 16, Nh = 21, Nn = 16 (∆I = 2.5 µA cm−2,
∆m = ∆h = ∆n = 0.02) and ∆t = 0.25 ms. The parameters are set as V E

G = 0 mV, V I
G = −80 mV,

σ E
r = 0.5 ms, σ E

d = 3.0 ms, σ I
r = 0.5 ms, σ I

d = 7.0 ms [8] and f = 0.1 mS cm−2, ν = 150 Hz, S = 0.5
mS cm−2. In a, gC = 0.4 mS cm−2 (Color figure online)

[2,4,35], where voltage traces (action-potential shapes) play an essential role in generating
synchronous activity among neurons [6,22,46]. To clarify the high efficiency and accuracy of
our COO method for the electrically coupled networks, we consider an all-to-all connected
HH network of 80 excitatory and 20 inhibitory neurons with electrical couplings among
inhibitory neurons. The input current I inputi is given by I inputi = I Ei + I Ii + I ECi with

I Ei = −GE
i (t)(Vi − V E

G), I Ii = −GI
i (t)(Vi − V I

G), I ECi = −gC
M

M∑

j=1

(Vi − Vj),

(17)

where GE
i and GI

i are excitatory and inhibitory conductances, respectively, V E
G and V I

G are
the corresponding reversal potentials, I ECi is the electrical current, gC is the strength of
electrical coupling, and M is the total number of inhibitory neurons. The conductances are
defined as

GE
i (t) = f

∑

l

H(σ E
d , σ E

r , t − sil)+
∑

j

SEi j
∑

l

H(σ E
d , σ E

r , t − τ jl), (18)

GI
i (t) =

∑

j

S Ii j
∑

l

H(σ I
d , σ

I
r , t − τ jl), (19)

where H is thealpha function given inEq. (4). For simplicity,we take SQi j = S/N , Q = E, I .
In the COO method, when an inhibitory HH neuron fires an action potential, the action-

potential shape is recovered using the data set of pre-computed voltage traces as shown in
Fig. 15a, and the recovered voltage trace is used to compute its postsynaptic neuron’s electrical
current I EC . When taking a relatively large value of electrical coupling gC = 0.4 mS cm−2

[6,22], the electrical current of the HH neuron is in the range of [−40.1, 31.8] µA cm−2.
This electrical current is much smaller than the intrinsic current during the stiff period as
shown in Fig. 1b. Therefore, it will not further introduce large stiffness in the computation of
HH equations. Consequently, our COO method still allows using a large time step to evolve
the HH equations. For instance, the COO method with a large time step ∆t = 0.25 ms can

123

 10 Page 20 of 23 Journal of Scientific Computing (2020) 84:10

0 0.5 1 1.5
−0.1

−0.05

0

0.05

0.1

S

Ly
ap

un
ov

 e
xp

on
en

t

RK2:dt=0.03125
ETD2:dt=0.314
ETD2:dt=0.5

(a)

0 0.5 1 1.5
10

20

30

40

50

S

F
iri

ng
 r

at
e

RK2:dt=0.03125
ETD2:dt=0.314
ETD2:dt=0.5

(b)

Fig. 16 Numerical performance of the ETD2 method. a The largest Lyapunov exponent of the HH network
versus the coupling strength S. b Mean firing rate of the network versus the coupling strength S. The blue
squares, green circles, and red crosses represent the results using the RK2 method with ∆t = 2−5 = 0.03125
ms, the ETD2 method with time step ∆t = 0.314 ms and ∆t = 0.5 ms, respectively. The vertical dashed lines
indicate the values of S for which the network is in a chaotic regime. The HH network and parameters are the
same as those used in Fig. 6 (Color figure online)

achieve accurate results for both the shape of action potential and the mean firing rate as
shown in Fig. 15.

Comparison with library-based method We next discuss about the difference between our
method and the library-basedmethod [42]. The previous work, i.e., the library-basedmethod,
also allows one to evolve HH dynamics with a large time step, by establishing a library data
set in the spike period. The choice of reset voltage value V re when the neuron is just out of
the spike period is determined by the voltage trace when the neuron is in the periodic firing
regime by receiving constant current input I th. Meanwhile, note that the gating variables m,
h, and n do not explicitly depend on one another. Therefore, based on the voltage trace in the
periodic firing regime, one can evolve the dynamics of gating variables separately to obtain
their reset values, i.e., mre, hre, nre.

However, there is an implicit dependence among the gating variables m, h, and n and the
voltage trace obtained from the periodic firing regimemay not be sufficiently accurate to well
capture the voltage dynamicswhen the neuron is driven by a general current input. In contrast,
our offline data set is built by taking into account the above factors. As a consequence, the
library-based method cannot capture the transient dynamics, Hopf bifurcation point, and
accurate shape of action potentials [42], while our method can.

Comparison with ETD method Another approach to efficiently evolve the HH neural
network is the ETD method [3,5]. For instance, a second-order ETD (ETD2) method is
proposed in Ref. [3] by first linearly approximating the HH equations and then analytically
solving the approximated HH equations. This method is proven to be unconditionally stable
for the HH system [3]. We demonstrate that the ETD2 method will be inaccurate when using
a large time step. As shown in Fig. 16, the ETD2 method can indeed use much larger time
steps, e.g., ∆t = 0.314 ms or ∆t = 0.5 ms. However, the obtained results are not consistent
with those from the RK2method using a very small time step (∆t = 0.03125ms). In contrast,
by using the large time step ∆t = 0.314 ms, the numerical results of our COO method agree
well with the results of the RK2 method using a very small time step (∆t = 0.03125 ms) as
shown in Fig. 6.

Comparison with implicit method We point out that standard implicit methods, e.g., the
implicit Euler method, may not be effective for the simulation of HH neural networks. The

123

Journal of Scientific Computing (2020) 84:10 Page 21 of 23 10

implicit method requires solving the entire nonlinear HH system using iterative methods
such as fixed point iteration or Newton’s method. It requires extra computation to achieve
convergence of iteration in each time step. Moreover, as illustrated in Ref. [3], the time step
allowed in the implicit Euler method for HH network is on the order of 0.01 ms which is
much smaller than the time step allowed in the explicit RK2 method. Therefore, an implicit
method is inefficient for the simulation of HH neural networks.

Finally, we emphasize the versatility of the COOmethod.We point out that the data set can
be easily rebuilt for use with a variety of HHmodels, including those with different parameter
values or other HH-type neurons (e.g., neurons with bursting and adaptation behavior) [32].
We have provided a thorough and comprehensive manual for constructing and using the data
set that can be reproduced in each of these cases. The COO method can still retain many
properties of these HH-type neurons and can use large time steps to achieve high computa-
tional efficiency. Moreover, the COO method can be easily implemented in parallel, where
each neuron can be independently advanced and recalibrated, as illustrated in Algorithm 2.
The COO method is easy to use, and it is computationally efficient and accurate, making it
an excellent option for simulating large networks of HH neurons.

Acknowledgements This work was supported by National Key R&D Program of China (2019YFA0709503),
NSFC-11671259, NSFC-11722107, SJTU-UM Collaborative Research Program, and the Student Innovation
Center at Shanghai Jiao Tong University (D.Z.); the NSF Mathematical Sciences PostDoctoral Research
Fellowship (MSPRF) DMS-1703761 (J.C.). We dedicate this paper to our late professor David Cai.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Aihara, K.: Chaotic oscillations and bifurcations in squid giant axons. In: Chaos, pp. 257–269 (1986)
2. Beierlein, M., Gibson, J.R., Connors, B.W.: A network of electrically coupled interneurons drives syn-

chronized inhibition in neocortex. Nat. Neurosci. 3(9), 904–910 (2000)
3. Börgers, C., Nectow, A.R.: Exponential time differencing for Hodgkin–Huxley-like ODEs. SIAM J. Sci.

Comput. 35(3), B623–B643 (2013)
4. Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27,

393–418 (2004)
5. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2),

430–455 (2002)
6. Crodelle, J., Zhou, D., Kovacic, G., Cai, D.: A role for electrotonic coupling between cortical pyramidal

cells. Front. Comput. Neurosci. 13, 33 (2019)
7. Dayan, P., Abbott, L.: Theoretical neuroscience: computational and mathematical modeling of neural

systems. J. Cogn. Neurosci. 15(1), 154–155 (2003)
8. Dayan, P., Abbott, L.F.: Theoretical Neuroscience, vol. 806. MIT Press, Cambridge (2001)
9. Ding, L., Hou, C.: Stabilizing control of hopf bifurcation in the Hodgkin–Huxley model via washout filter

with linear control term. Nonlinear Dyn. 60(1–2), 131–139 (2010)
10. Galarreta, M., Hestrin, S.: A network of fast-spiking cells in the neocortex connected by electrical

synapses. Nature 402(6757), 72–75 (1999)
11. Gerstner, W., Kistler, W.M.: Spiking NeuronModels: Single Neurons, Populations, Plasticity. Cambridge

University Press, Cambridge (2002)
12. Gu, H., Pan, B.: A four-dimensional neuronalmodel to describe the complex nonlinear dynamics observed

in the firing patterns of a sciatic nerve chronic constriction injurymodel. NonlinearDyn. 81(4), 2107–2126
(2015)

13. Guckenheimer, J., Oliva, R.A.: Chaos in the Hodgkin–Huxley model. SIAM J. Appl. Dyn. Syst. 1(1),
105–114 (2002)

123

 10 Page 22 of 23 Journal of Scientific Computing (2020) 84:10

14. Hansel, D., Mato, G., Meunier, C., Neltner, L.: On numerical simulations of integrate-and-fire neural
networks. Neural Comput. 10(2), 467–483 (1998)

15. Hansel, D., Sompolinsky, H.: Chaos and synchrony in a model of a hypercolumn in visual cortex. J.
Comput. Neurosci. 3(1), 7–34 (1996)

16. Hassard, B.: Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon. J.
Theor. Biol. 71(3), 401–420 (1978)

17. Hertz, J., Prügel-Bennett, A.: Learning short synfire chains by self-organization. Netw. Comput. Neural
Syst. 7(2), 357–363 (1996)

18. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to
conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

19. Ikegaya, Y., Sasaki, T., Ishikawa, D., Honma, N., Tao, K., Takahashi, N., Minamisawa, G., Ujita, S.,
Matsuki, N.: Interpyramid spike transmission stabilizes the sparseness of recurrent network activity.
Cerebral Cortex 23(2), 293–304 (2012)

20. Ito, S., Hansen, M.E., Heiland, R., Lumsdaine, A., Litke, A.M., Beggs, J.M.: Extending transfer entropy
improves identification of effective connectivity in a spiking cortical network model. PLoS ONE 6(11),
e27431 (2011)

21. Koch, C., Segev, I.: Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge
(1998)

22. Kopell, N., Ermentrout, B.: Chemical and electrical synapses perform complementary roles in the syn-
chronization of interneuronal networks. Proc. Natl. Acad. Sci. 101(43), 15482–15487 (2004)

23. Mainen, Z.F., Sejnowski, T.J.: Influence of dendritic structure on firing pattern in model neocortical
neurons. Nature 382(6589), 363 (1996)

24. Mattia, M., Del Giudice, P.: Efficient event-driven simulation of large networks of spiking neurons and
dynamical synapses. Neural Comput. 12(10), 2305–2329 (2000)

25. McLaughlin, D., Shapley, R., Shelley, M., Wielaard, D.J.: A neuronal network model of macaque primary
visual cortex (v1): orientation selectivity anddynamics in the input layer 4cα. Proc.Natl.Acad. Sci.97(14),
8087–8092 (2000)

26. Monteforte, M., Wolf, F.: Dynamic flux tubes form reservoirs of stability in neuronal circuits. Phys. Rev.
X 2(4), 041007 (2012)

27. Nie, Q.,Wan, F.Y., Zhang, Y.T., Liu, X.F.: Compact integration factor methods in high spatial dimensions.
J. Comput. Phys. 227(10), 5238–5255 (2008)

28. Oseledec,V.I.:Amultiplicative ergodic theorem.Lyapunov characteristic numbers for dynamical systems.
Trans. Moscow Math. Soc. 19(2), 197–231 (1968)

29. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)
30. Parker, T.S., Chua, L.: Practical Numerical Algorithms for Chaotic Systems. Springer, Berlin (2012)
31. Perkel, D.H., Gerstein, G.L., Moore, G.P.: Neuronal spike trains and stochastic point processes: II. Simul-

taneous spike trains. Biophys. J. 7(4), 419–440 (1967)
32. Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., Markram, H.,

Destexhe,A.:MinimalHodgkin–Huxley typemodels for different classes of cortical and thalamic neurons.
Biol. Cybern. 99(4), 427–441 (2008)

33. Quinn, C.J., Coleman, T.P., Kiyavash, N., Hatsopoulos, N.G.: Estimating the directed information to infer
causal relationships in ensemble neural spike train recordings. J. Comput. Neurosci. 30(1), 17–44 (2011)

34. Rangan, A.V., Cai, D.: Fast numerical methods for simulating large-scale integrate-and-fire neuronal
networks. J. Comput. Neurosci. 22(1), 81–100 (2007)

35. Revel, J., Karnovsky, M.: Hexagonal array of subunits in intercellular junctions of the mouse heart and
liver. J. Cell Biol. 33(3), C7 (1967)

36. Rinzel, J., Ermentrout, G.B.: Analysis of neural excitability and oscillations. Methods Neuronal Model.
2, 251–292 (1998)

37. Shelley, M.J., Tao, L.: Efficient and accurate time-stepping schemes for integrate-and-fire neuronal net-
works. J. Comput. Neurosci. 11(2), 111–119 (2001)

38. Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H.,
Doi, T., Kawano, K., et al.: Relating neuronal firing patterns to functional differentiation of cerebral
cortex. PLoS Comput. Biol. 5(7), e1000433 (2009)

39. Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.:
The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006)

40. Somers, D.C., Nelson, S.B., Sur, M.: An emergent model of orientation selectivity in cat visual cortical
simple cells. J. Neurosci. 15(8), 5448–5465 (1995)

41. Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly nonrandom features of synaptic
connectivity in local cortical circuits. PLoS Biol. 3(3), e68 (2005)

123

Journal of Scientific Computing (2020) 84:10 Page 23 of 23 10

42. Sun, Y., Zhou, D., Rangan, A.V., Cai, D.: Library-based numerical reduction of the Hodgkin–Huxley
neuron for network simulation. J. Comput. Neurosci. 27(3), 369–390 (2009)

43. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron
63(4), 544–557 (2009)

44. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)
45. Tian, Z.Q.K., Zhou, D.: Exponential time differencing algorithm for pulse-coupled Hodgkin–Huxley

neuronal networks. arXiv preprint arXiv:1910.08724 (2019)
46. Wang, Y., Barakat, A., Zhou, H.: Electrotonic coupling between pyramidal neurons in the neocortex.

PLoS ONE 5(4), e10253 (2010)
47. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series.

Phys. D: Nonlinear Phenom. 16(3), 285–317 (1985)
48. Xu, Z.Q.J., Bi, G., Zhou, D., Cai, D.: A dynamical state underlying the second order maximum entropy

principle in neuronal networks. Commun. Math. Sci. 15(3), 665–692 (2017)
49. Zhou,D.,Rangan,A.V., Sun,Y.,Cai,D.:Network-induced chaos in integrate-and-fire neuronal ensembles.

Phys. Rev. E 80(3), 031918 (2009)
50. Zhou, D., Sun, Y., Rangan, A.V., Cai, D.: Spectrum of Lyapunov exponents of non-smooth dynamical

systems of integrate-and-fire type. J. Comput. Neurosci. 28(2), 229–245 (2010)
51. Zhou, D., Xiao, Y., Zhang, Y., Xu, Z., Cai, D.: Granger causality network reconstruction of conductance-

based integrate-and-fire neuronal systems. PLoS ONE 9(2), e87636 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123
View publication statsView publication stats

http://arxiv.org/abs/1910.08724
https://www.researchgate.net/publication/342422981

	A Combined Offline–Online Algorithm for Hodgkin–Huxley Neural Networks
	Abstract
	1 Introduction
	2 The Model
	3 Runge–Kutta Method
	4 Combined Offline–Online Method
	4.1 Building Offline Data Set
	4.2 Using the Offline Data Set

	5 Numerical Results
	5.1 Transient Dynamics and Hopf Bifurcation Point of an Individual HH Neuron
	5.2 Lyapunov Exponent
	5.3 Convergence Tests
	5.4 Computational Efficiency
	5.5 Network Firing Patterns
	5.6 Error of Combined Offline–Online Method

	6 Conclusion
	Acknowledgements
	References

