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Abstract

Laser cooling experiments developed in the last decade enable physicists to slow

down and spatially confine neutral atoms of a gas, thus lowering the temperature of

trapped atoms into the µK range. One of the challenges associated with laser cool-

ing is to stabilize a laser so that its output frequency matches that of a hyperfine

structure transition and has an absolute stability of several MHz. In this project, we

establish the groundwork for future laser cooling experiments with 85Rb by perform-

ing saturated-absorption Doppler-free spectroscopy studies. We acquire Doppler-free

spectra of 85Rb that resolve individual hyperfine structure transitions, including the

transition that the laser must excite in laser cooling experiments. The spectra we

obtained can readily be repeated and the experimental apparatus can provide the

feedback for an electronic laser stabilization circuit.
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Chapter 1

Introduction

Steven Chu,1 Claude Cohen-Tannoudji,2 and William Phillips,3 jointly received the

1997 Nobel Prize in Physics for developing experiments that cool down and spatially

confine the atoms of a gas. In the last decade, laser cooling has become a hot topic

in experimental physics and neutral atoms have been cooled using these methods to

temperatures of merely 1 µK.[1] This senior thesis work marks the beginning of a

project whose goal is to laser cool 85-rubidium.

Our goals for this senior thesis project are somewhat less lofty than winning the

Nobel Prize or even laser cooling 85Rb within the year. The road to laser cooling

is a long one and we establish crucial groundwork in the laboratory and strive to

understand the theory and physical concepts underlying our experiments. The first

step down the road is to understand the function of a diode laser, to which end we

devote Chapter 3. Diode lasers are used in laser cooling experiments for their narrow

linewidth and tunability. Using a tunable laser is a distinct advantage, as it can be

tuned to match the energy of an atomic transition that is targeted in laser cooling.

While diode lasers have tunable frequency output, they can also have somewhat

unstable frequency output. Hence, it is necessary to assemble an electronic feedback

1Stanford University, Stanford, CA. Currently U.S. Secretary of Energy.
2College of France, Paris, FRA
3National Institute for Standards and Technology, Gaithersburg, MD
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CHAPTER 1. INTRODUCTION

circuit that stabilizes the output frequency of the laser. In this project, we obtain

Doppler-free saturated-absorption spectra of the 85Rb 5S1/2 → 5P3/2 transition that

resolve individual hyperfine transitions and will be used as the feedback for laser

stabilization in the future. Chapter 4 outlines the theory behind the experimental

techniques used, and Chapter 5 describes our experimental setup and results.

In Chapter 2, we explore some results regarding the interaction of light and mat-

ter that will be useful in later chapters. Chapter 6 describes the theory behind laser

cooling. This chapter may be of use to future thesis students as a means of under-

standing the ultimate goals of the project. The reader may also want to read this

chapter first, as motivation for the measures taken throughout this project.
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Chapter 2

Light and Matter

2.1 The Electric and Magnetic Wave Equations

In 1861, James Clerk Maxwell published On Physical Lines of Force, a paper that fea-

tured a set of equations to describe electromagnetic phenomena. Although Maxwell

drew from the work of Michael Faraday, André-Marie Ampère, and Carl Gauss, the

equations are now unified under the name “Maxwell’s equations” to credit Maxwell’s

astute realization of the need to augment Ampère’s Law. Maxwell also postulated

the existence of electromagnetic waves in A Dynamical Theory of the Electromag-

netic Field in 1864. In this view, light could now be seen as an electromagnetic

phenomenon.

In laser cooling experiments, we are particularly concerned with the ways in which

electromagnetic radiation interacts with matter. In particular, we must be familiar

with light propagating through dielectric media, such as a dielectric solid or a gas of

neutral atoms, such as rubidium vapor. In a dielectric medium, Maxwell’s equations

become [2]
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CHAPTER 2. LIGHT AND MATTER

~∇ · ~D = 0 (2.1)

~∇ · ~B = 0 (2.2)

~∇× ~E = −∂
~B

∂t
(2.3)

~∇× ~H =
∂ ~D

∂t
. (2.4)

We will be concerned with nonmagnetic media, in which ~H = 1
µ0
~B. The elec-

tric displacement ~D is proportional to the electric field ~E and the medium’s electric

polarization ~P : 1

~D = ε0 ~E + ~P . (2.5)

It will be useful in later discussions (Chapter 4) to express the wave equation for

electromagnetic radiation in dielectric media. To do so, we first take the curl of both

sides of Faraday’s Law (Eq. 2.3)

~∇×
(
~∇× ~E

)
= −~∇× ∂ ~B

∂t
.

The triple product on the left hand side can be rewritten and Ampère’s Law (Eq. 2.4)

can be used to express the right hand side in terms of the electric displacement:

~∇
(
~∇ · ~E

)
−∇2 ~E = −µ0

∂2 ~D

∂t2
.

Substituting for the electric displacement, using Eq. 2.5, and rearranging terms, we

find that

∇2 ~E − ~∇
(
~∇ · ~E

)
− 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
.

1I refer to ~P , the electric dipole per unit volume of the medium, as the “medium’s polarization”
in order to differentiate it from the polarization of an electromagnetic wave.

6



CHAPTER 2. LIGHT AND MATTER

Here, we have invoked the relationship 1
µ0ε0

= c2 in order to introduce the speed of

light in vacuum c and massage this expression to take on the recognizable form of the

wave equation. If we consider only transverse fields, then ~∇ · ~E = 0 and the electric

wave equation is

∇2 ~E − 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
. (2.6)

By a similar derivation, we can express the wave equation for the magnetic field

∇2 ~B − 1

c2

∂2 ~B

∂t2
=
−1

ε0c2

∂

∂t

(
~∇× ~P

)
. (2.7)

Maxwell’s equations have yielded a powerful result. Equations 2.6 and 2.7 reveal that

electric and magnetic fields propagate through dielectric media as a wave.

This formulation of the wave equation relates information about how electric and

magnetic fields propagate through a dielectric to material properties of the dielectric.

The polarization ~P in Eq. 2.6 is the dipole moment per unit volume of matter. In the

presence of an electric field, the electron cloud and the nucleus of an atom will experi-

ence oppositely directed forces in accordance with the Lorentz force law, causing the

atom to separate spatially into a region of positive charge and a region of negative

charge: an electric dipole. The electric dipole moment ~p of an atom is proportional to

the electric field that the atom experiences: ~p = α~E. The proportionality constant α

is called the atomic polarizability and it is an atomic property that can be predicted

from the quantum mechanics of the atom. In order to fully understand the relation-

ship given by the wave equation, we will commit Chapter 4 to studying these material

properties. In examining a semiclassical model of the atom called the Lorentz model,

we will find that α is actually dependent upon the frequency of the incident electric

field. This will be an important consideration when we are performing spectroscopic

studies of rubidium.

7



CHAPTER 2. LIGHT AND MATTER

x 

y 

z E 

B k 

Figure 2.1: Diagram of a monochromatic plane wave polarized in the x̂ direction and
propagating in the ẑ direction.[3]

2.2 Polarization of Light

The polarization of a wave is the direction of the wave’s displacement from equilib-

rium. For a wave on a piece of rope, for example, the polarization is the direction

that a fixed point on the rope moves over time. By convention, the polarization of an

electromagnetic wave is taken to be the direction of the electric field. For example,

Fig. 2.1 shows light polarized in the x̂ direction, traveling with wave vector ~k = kẑ.2

Vertical polarization is a term often used to indicate polarization in the direction

perpendicular to the surface of an optics table. Likewise, horizontal polarization

indicates polarization in the direction parallel to the table surface.

In general, the complex exponential form for the electric field of an electromagnetic

2For consistency throughout this document, we will refer to an electromagnetic wave propagating
in the ẑ-direction, as shown in Fig. 2.1.
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CHAPTER 2. LIGHT AND MATTER

wave propagating in the ẑ direction is written

~̃E(z, t) = E0xe
i(kz−ωt)x̂+ E0ye

i(kz−ωt+δ)ŷ. (2.8)

In this expression, δ is the relative phase between the two waves and it suffices to in-

clude this information in the y-component of the complex electric field. Equivalently,

we can rewrite this expression using Euler’s formula.3 The real part of this complex

expression is the physical electric field:

~E(z, t) = E0x cos (kz − ωt)x̂+ E0y cos (kz − ωt+ δ)ŷ. (2.9)

This is a general form for the equation of a linearly polarized electromagnetic wave.

For linear polarization, the direction of the electric field vector does not change with

time; it always points in the same direction in the x-y plane. If E0x = 0, for example,

the wave is polarized in the ŷ direction. If E0x = E0y, then the wave is polarized at

a 45° angle to the x-axis.

The polarization of a wave can be changed by causing one of the electric field

components to become out of phase with the other. Let us consider several phase

shifts to the y-component of Eq. 2.8. First, consider shifting the phase of the y-

component π radians behind the x-component. Equation 2.8 becomes

~̃E(z, t) = Ẽ0xe
i(kz−ωt)x̂+ Ẽ0ye

i(kz−ωt+π)ŷ (2.10)

= Ẽ0xe
i(kz−ωt)x̂− Ẽ0ye

i(kz−ωt)ŷ. (2.11)

Here, I’ve used the fact that adding a phase shift of π radians is mathematically

equivalent to multiplying by −1. Once again using Euler’s formula and taking only

3eiβ = cos(β) + i sin (β)

9



CHAPTER 2. LIGHT AND MATTER

the real part to be the electric field, we find that

~E(z, t) = E0x cos (kz − ωt)x̂− E0y cos (kz − ωt)ŷ. (2.12)

If the x and y components of the electric field become π radians, or 180°, out of

phase with one another, the resultant polarization is still linear, but flipped about

the x-axis. Therefore, for radiation polarized at an angle θ to the x-axis, a phase

shift of π radians rotates the polarization by an angle of 2θ.4 By this same logic,

you could convince yourself that introducing a phase shift of −π radians to the wave

represented by Eq. 2.12 would recover the original polarization angle.

Now, let us consider introducing a phase shift of π
2

radians to the y-component of

Eq. 2.9. In this case, Eq. 2.9 becomes

~̃E(z, t) = Ẽ0xe
i(kz−ωt)x̂+ Ẽ0ye

i(kz−ωt+π
2

)ŷ (2.13)

= Ẽ0xe
i(kz−ωt)x̂+ iẼ0ye

i(kz−ωt)ŷ, (2.14)

where I’ve used the fact that ei
π
2 = i. Repeating the steps of using Euler’s formula

and taking the real part, we find that

~E(z, t) = E0x cos (kz − ωt)x̂− E0y sin (kz − ωt)ŷ. (2.15)

Letting z = 0, it is clear that the polarization vector traces, in time, an ellipse in the

x-y plane with axes of length 2E0x and 2E0y. We are more interested in the special

case in which E0x = E0y and can see that the polarization vector traces out a circle

in time in the x-y plane. If, when viewing the x-y plane from the positive z-axis, the

polarization vector traces out a circle in the clockwise direction, the radiation is said

to be right circularly polarized, as shown in Fig. 2.2a. Conversely, if the polarization

4θ ≡ cos−1 (E0y/E0x)

10



CHAPTER 2. LIGHT AND MATTER

x 

y 

E 

σ‐ 

(a) Right circularly polarized light.

x 

y 

E 

σ+ 

(b) Left circularly polarized light.

Figure 2.2: Circularly polarized light.[4]

vector traces out a counterclockwise circle in the x-y plane, the radiation is left

circularly polarized, as shown in Fig. 2.2b.[4][5] For E0x = E0y, Eq. 2.15 represents

right circularly polarized radiation. By convention, right circularly polarized radiation

is denoted σ−, while left circularly polarized radiation is denoted σ+.

Let us now consider the possibility of shifting the y-component of the circularly

polarized wave (Eq. 2.15) by π radians behind the x-component. Mathematically,

this means that

~E(z, t) = E0x cos (kz − ωt)x̂− E0y sin (kz − ωt+ π)ŷ (2.16)

= E0x cos (kz − ωt)x̂+ E0y sin (kz − ωt)ŷ. (2.17)

In this case, the polarization vector would trace out an circle in the x-y plane, but

in the opposite direction as that in Eq. 2.15. Thus, a phase shift of π radians can

change the direction of circular polarization.

Since electromagnetic radiation carries momentum in its fields, it should be no

surprise that circularly polarized radiation carries both angular momentum and linear

momentum.[3] The atom traps used in laser cooling experiments exploit this property

in order to create a spatially-dependent restoring force on the atoms. Thus, the ability

11



CHAPTER 2. LIGHT AND MATTER

to control the polarization of light is crucial to laser cooling experiments, as we will

discuss in Chapter 6.

2.3 Wave Plates

When conducting experiments involving optics equipment and lasers, it is often con-

venient or necessary to change the polarization of radiation. For example, it may

be necessary to simply rotate a linearly polarized beam, rotate vertical polarization

to horizontal, circularly polarize a linearly polarized beam, or change between right

and left circularly polarized radiation. We saw how this is explained mathematically

in section 2.2. Now, we describe the physical devices that make such changes in

polarization possible: waveplates.

Consider laser radiation of angular frequency ωL incident upon an atom. The

electric field component of the laser radiation exerts a force on the electrons in an

atom. An electron in an atom can be viewed as a charged mass me on a spring

of spring constant ks.
5 The electron of mass me will then oscillate at its natural

frequency:

ω0 =

√
ks
me

. (2.18)

The oscillating electron reradiates and the incident and reradiated waves recombine

in the medium. The resultant wave may be out of phase with the incident wave. We

know this from intuition; the speed of light in matter is less than c because the index

of refraction is greater than one. The higher the index of refraction, the more the

wave slows down and the greater the phase difference.

Crystaline solids have a particular direction, determined by the crystal structure,

that is called the optic axis. Some crystals are classified as optically anisotropic,

meaning that their optical properties are different in directions perpendicular and

5We will revisit this view in section 4.2. Although the model studied there applies to dilute
dielectric gases, it can be extended to dielectric solids by using the Clausius-Mossotti equation.[3]

12
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x 

y 

z 

k 

E 

Ey 

Ex 

O
pt
ic
 A
xi
s 

Figure 2.3: An electromagnetic wave of wavevector ~k = kẑ and electric field polariza-
tion vector Exx̂+Eyŷ (red) propagating through an anisotropic medium. The crystal
optic axis (green arrows) is in the x̂-direction.

parallel to the optic axis.6 For light traveling through an anisotropic crystal, the

component of the the wave polarized parallel to the optic axis experiences a small

index of refraction and is weakly absorbed by the medium. Conversely, the component

of the wave polarized perpendicular to the optic axis is strongly absorbed.7 [6]

Consider the case of an electromagnetic wave propagating through an anisotropic

solid, as shown in Fig. 2.3. The wave has wavevector ~k = kẑ and polarization in an

arbitrary direction parallel to the x-y plane. If the crystal’s optic axis is in the x̂-

direction, then the component of the wave polarized in the x̂-direction will experience

an index of refraction nx that is less than ny, the index of refraction encountered by

the component of the wave polarized perpendicular to the optic axis. When the light

6The anisotropy of optical properties results from anisotropy of binding strengths in the crystal.
Equation 2.18 provides some intuition for this; a stronger binding force can be viewed as a stiffer
spring that would result in a higher natural frequency of oscillation. Again, I will refer the reader
to Chapter 4 for more information on optical properties such as refractive index.

7It is important to note that the optic axis is a direction in the crystal and not a single line.
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CHAPTER 2. LIGHT AND MATTER

travels a distance z through an anisotropic crystal, the x̂ and ŷ components of the

wave are shifted out of phase from one another by [2] [6]

δ =
ωLz

c
(ny − nx) . (2.19)

We have already seen in section 2.2 how a phase difference between these two com-

ponents can change the polarization. Waveplates are constructed by choosing an

anisotropic solid with the desired indices of refraction nx, ny and making it the

appropriate thickness to cause the desired phase shift. Since the phase difference

also depends upon ωL, manufacturers typically specify a range of frequencies over

which the waveplate is operable. For many optics experiments, including laser cool-

ing (Chapter 6), having control over the polarization of light is crucial.

14



Chapter 3

Diode Laser

3.1 Semiconductor Materials and Junctions

Crystalline solid semiconductors have electrical conductivity between that of a metal

and an insulator. Their most notable electrical property is the existence of a region of

energies forbidden to electrons, known as the band-gap. By altering the conductivity

and layering semiconductors, a class of devices known as semiconductor junction

devices can be fabricated. Semiconductors enable the creation of light emitting diodes,

transistors, photovoltaic cells, and laser diodes. This section discusses the physical

properties of semiconductors that enable the creation of such devices, particularly

laser diodes.

The energy and linear momentum (p = ~k) of a free electron, or one in the absence

of an external electrical potential, are related by

E(k) =
~2k2

2me

, (3.1)

where me is the mass of the electron and k is the electron wave-vector. [7] [8] In a

semiconductor, electrons are not free particles, nor are they bound to specific atoms

or molecules within the solid. They travel through the solid and are perturbed by the

15



CHAPTER 3. DIODE LASER

periodic potential energy produced by the crystal lattice U(~r).1 The time-independent

Schrödinger equation for an electron in a semiconductor is

−~2

2me

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) + U(~r)ψ(~r) = Eψ(~r). (3.2)

Bloch’s Theorem states that the solution to Eq. 3.2 is of the form

ψ(~r) = U(~r)ei
~k·~r. (3.3)

Treating the electron as a quantum mechanical particle in a cube of side length L,

we impose periodic boundary conditions for the wave-vector in three dimensions

kxx+ kyy + kzz = kx(x+ L) + ky(y + L) + kz(z + L). (3.4)

This requires that

kx = 0,±2π

L
,±4π

L
. . . , (3.5)

with the same values for ky and kz.[8]

The band-gap arises from the fact that, at the Brillouin zone boundaries, the

electron wave functions are standing waves. Consequently, k = nπ
a

, where n is an

integer and a is the lattice constant of the crystal lattice. Here, k satisfies the Bragg

diffraction condition, resulting in one wave traveling to the right and one traveling

to the left. This results in two standing wave solutions to the time-independent

Schrödinger equation, each of which concentrates electrons at different regions in

space, so that each wave has a different expectation value for potential energy. The

difference between these two energies is the band-gap. [8] There are no allowed energy

levels for electrons within the band-gap. Above and below the band-gap, electrons

occupy closely-spaced energy levels so that each band can be viewed as a single

1For this reason, electrons in a semiconductor are often described as “nearly free.”
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continuous band of energies.

Electrons with energies above that of the band-gap occupy the conduction-band,

while those with energies below the band-gap occupy the valence-band. Near the

bottom of the conduction-band, for |k| < π
a
, the energy of an electron can be approx-

imated as parabolic

E(k) ≈ EC +
~2k2

2m∗e
, (3.6)

where EC is the energy of the conduction-band. Unlike a free electron, an electron

in a semiconductor behaves as though it has effective mass m∗e in the presence of the

periodic potential of the crystal lattice. We can similarly describe the absence of an

electron, called a hole, in the valence-band with the same quantum number k and a

similar energy-momentum relation

E(k) ≈ EV −
~2k2

2m∗h
, (3.7)

where EV is the valence-band energy and m∗h is the effective mass of a hole. This shows

that the band edges in a typical semiconductor can be approximated as parabolic well

within the first Brillouin zone,2 as shown in Fig. 3.1. Figure 3.1 also shows how an

electron-hole pair is created when an incident photon excites an electron from the

valence-band to the conduction-band. Note that the reverse process also occurs;

when an electron-hole pair recombines, a photon is released. [7] This process is the

basis of a laser diode, as we will discuss in the next section.

In semiconductor physics, it is useful to define a quantity called the Fermi level,

EF which is the highest energy occupied by an electron. The Fermi-Dirac distribution

f(E) =
1

1 + e
E−EF
kBT

, (3.8)

2This approximation holds for k < π
a , or near the bottom of the conduction-band and top of the

valence-band.
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Figure 3.1: Parabolic energy bands in a semiconductor as a function of wave-vector
k, away from the first Brillouin zone boundary. Dark circles represent electrons and
light circles represent holes. [9]

where kB is Boltzmann’s constant, gives the probability that, at temperature T , an

energy state of energy E is occupied by an electron. The probability of an electron

having an energy E > EF decreases with increasing E.

According to Eq. 3.5, a single state occupies a volume of (2π
L

)3 in k space. In

k-space, an electron occupying the Fermi energy level has wave-vector kF . We can

then count the number of electron quantum states N contained in a sphere of radius

kF

N = 2
4/3πk3

F

(2π/L)3
, (3.9)

the factor of two accounting for the two spins of the electron. Solving for kF and

plugging into Eq. 3.6, we find that

EF =
~2

2m∗e

(
3π2N

V

)2/3

+ EC (3.10)

where V ≡ L3 is the volume of the “box” containing the electron. This says that the
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Fermi level of electrons in the conduction-band depends solely on electron concen-

tration. Thus, by changing the electron concentration in a semiconductor, we have

the ability to control the Fermi level. In a laser diode, this is achieved by sending

a current through the semiconductor material, as we will see in section 3.2.2. The

temperature dependence of Eq. 3.10 is contained in the electron carrier concentration

N
V

= n (Eq. A.4).

3.1.1 Intrinsic Semiconductors and Doping

In Appendix A,3 we derive an expression for the intrinsic carrier concentration in a

semiconductor at thermal equilibrium, for which the Fermi level lies well within the

band-gap, kBT � |E − EF |. [9] [8] We find that the intrinsic carrier concentration

can be expressed

ni = 2

(
kBT

~2

)3/2

(m∗em
∗
h)

3/4 exp

[
EV − EC

2kBT

]
. (3.11)

This shows that the intrinsic carrier concentration in a semiconductor does not depend

upon the Fermi level. We will soon see that adding carriers to the semiconductor

changes the Fermi level.

Intrinsic semiconductors, or those with no impurities, have electron and hole con-

centrations given by the intrinsic carrier concentration. We can change the carrier

concentrations by adding electrons or holes, the process of which is called doping.

Semiconductors can be p-doped by adding holes and causing the material to become

an acceptor of electrons. This is achieved by introducing an impurity atom of similar

lattice constant. This impurity atom has fewer valence electrons than the pure semi-

conductor atoms, resulting in a deficiency of electrons when chemical bonds form.

For example, if boron (valence three) is added to pure silicon (valence four), then a

3Although similar derivations can be found in refs. [9] or [8] and may be addressed in a course
such as PHYS 340 or 350, a concise derivation is provided here.
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hole is left over after boron forms tetrahedral bonds with the nearest-neighbor silicon

atoms. This semiconductor now has a mobile positive charge and will readily accept

an electron. This has a profound impact on the electrical conductivity of the material;

silicon with boron added in just 1 part in 105 has a conductivity 1,000 times that of

intrinsic silicon at room temperature [8].

Similarly, an n-doped semiconductor is made by adding electrons and causing the

semiconductor to become an electron donor. Adding an electrically neutral impurity

atom with a greater number of valence electrons to the intrinsic semiconductor crystal

lattice results in extra free electrons within the lattice. For example, the group IV

element silicon has the same crystal structure as diamond, forming a tetrahedral

bonds with its nearest neighbors. Introduction of phosphorus, valence five, results in

one extra electron after the four bonds with nearest neighbor silicon atoms have been

formed. Thus, these doped atoms can readily give up an electron and are said to be

electron donors.

When semiconductors are moderately doped, the concentration of dopant elec-

trons approximately equals the intrinsic electron concentration. Knowing the electron

concentration, the law of mass action (Eq. A.9) can be used to find the conduction

electron concentration in terms of the dopant concentration. The calculation is simi-

lar for dopant holes and the resultant valence-band hole concentrations. For moderate

doping, the Fermi level is unchanged. When a semiconductor is heavily doped, how-

ever, the Fermi level can be raised into the conduction-band for n-doping or lowered

in energy to the valence-band for p-doping. In this case, the Fermi level is no longer

in the band-gap and the thermal equilibrium approximation (Eqs. A.3 and A.5) fails.

The condition of heavy doping creates electron-hole pairs. Electrons-hole pairs can

annihilate through radiative or nonradiative recombination. Radiative recombination

occurs in direct band-gap semiconductors, in which the minimum of the conduction-

band and the maximum of the valence-band occur at the same value of k. In radiative
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recombination, the energy released is in the form of radiation with hν = EG, as shown

in Fig. 3.1. Nonradiative recombination occurs in indirect band-gap semiconductors

and is undesirable in semiconductor applications such as diode lasers. Here, energy

is released in the form of a phonon, which dissipates as vibration and heat in the

solid. In a heavily doped semiconductor, electrons and holes recombine at a rate far

slower than the time it takes for thermal equilibrium to be reached within each band.

Thus, the holes in the valence-band are at thermal equilibrium, as are the electrons

in the conduction-band, yet the electrons and holes are not in thermal equilibrium

with each other. The semiconductor is said to be in a state of quasi-equilibrium. At

quasi-equilibrium, we refer to the semiconductor as having two separate Fermi levels

for the conduction-band electrons EFe and for the valence-band holes EFh . We are

particularly interested in the role of radiative recombination in the function of a laser

diode and will revisit this topic in section 3.2.

3.1.2 Semiconductor Junctions

A homojunction is a semiconductor device that is formed when regions of the same

semiconductor with different levels of doping are brought into contact. Many interest-

ing applications arise from a configuration in which a region of n-doped semiconductor

interfaces with a region of p-doped semiconductor, known as a p-n junction. At a

p-n junction, carriers diffuse from regions of high concentration to low concentration

in the form of a diffusion current. Electrons in the conduction-band recombine with

holes in the valence-band, leaving behind positively charged, immobile ions. Sim-

ilarly, holes in the valence-band recombine with electrons in the conduction-band,

leaving behind negatively charged, immobile ions. This leaves a narrow region on

either side of the junction that is depleted of mobile charge carriers. This region,

known as the depletion layer, has a thickness that is inversely proportional to the

dopant concentration.[7]
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Now, the junction has a region of immobile positive charge on the n side and a

region of negative charge on the p side. This results in an electric field pointing from

the n-region to the p-region, preventing further diffusion of mobile charge carriers.

Once equilibrium has been achieved, the n side is at a higher electrostatic potential

than the p side, resulting in a lower potential energy for electrons in the n-region.

This band bending occurs until the solid is in thermal and electrical equilibrium and

has a single Fermi level. [7]

The p-n junction can be forward biased by applying a positive voltage to the

p-region and grounding the n-region. This produces an electric field from the p-

region to the n-region, opposite in direction to that created by the semiconductor at

equilibrium. Electrons flow from the n-region to the p-region, while holes flow from

the p-region to the n-region. Forward biasing disrupts equilibrium and the electrons

and holes have two separate Fermi levels, EFe > EFh . The semiconductor is now in a

state of quasi-equilibrium. [7]

3.2 The Laser Diode

The properties of semiconductors that have been described thus far lend themselves

to applications in which electrical energy is transformed into radiation or radiation

energy is turned into an electrical signal. Laser diodes and LED’s are an example of

the former, while the photodetector is an example of the latter. This section discusses

how the properties of semiconductors lend themselves to the creation of a laser, which

is an acronym for light amplification by stimulated emission of radiation.

3.2.1 Population Inversion, Stimulated Emission, and Gain

In stimulated emission, a photon incident upon an electron that has been excited to

the conduction-band causes the electron to recombine radiatively with a hole. The
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photon released is of identical wave-vector ~k, frequency, polarization, and phase.[9]

In a semiconductor at thermal equilibrium, this process would necessitate sending in

an incident photon to create an electron-hole pair, then subsequently sending in a

photon to cause emission. In this photon-for-photon trade, there would be no net

increase of photons in the semiconductor material.

Increasing the number of emission events in the semiconductor first requires the

creation of many electron-hole pairs. This means raising the quasi Fermi level for

electrons into the conduction-band, lowering the Fermi level for holes into the valence-

band, or both, and can be accomplished by forward biasing the junction. We will

soon see that this sufficient forward biasing enables stimulated emission.

When photons interact with electron-hole pairs in a semiconductor, energy and

momentum must be conserved. Energy conservation dictates that the energy of an

absorbed or emitted photon must equal the separation in energy of the electron-hole

pair that is created or destroyed, respectively. For photon emission by electron-hole

recombination, [9]

Ee − Eh = hν. (3.12)

Momentum conservation also holds in photon interactions with holes and elec-

trons. Simply put, the photon momentum must correspond to the difference in mo-

menta of the recombined electrons (pe) and holes (ph)

pe − ph =
hν

c
. (3.13)

The momentum conservation statement can be rewritten in terms of the electron and

hole wave-vectors, ke and kh, respectively, as

ke − kh =
2π

λ
. (3.14)
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The magnitude of the photon momentum hν
c

= h
λ

is far less than the range of momenta

that electrons and holes can have; ke and kh reach a maximum at the first Brouillin

zone, where ke or kh = 2π
a

. Since the lattice constant a of semiconductors is far

smaller than the wavelengths of radiation whose energies match the semiconductor

energy transitions, we can assume that 2π
a
� 2π

λ
. Using this inequality, the right hand

side of Eq. 3.14 is approximately zero, yielding the selection rule for wave-vector [9]

ke ≈ kh ≡ k. (3.15)

The interpretation of Eq. 3.15 is this: only direct band-gap seimconductors are desir-

able for applications such as laser diodes, in which electron-hole pairs must combine

radiatively. When the wave-vector of the electron in the conduction-band matches

that of the hole in the conduction-band, recombination occurs through radiation emis-

sion. When the wave-vectors are mismatched, energy conservation still holds during

recombination, resulting in the formation of a phonon. Energy released in the form

of a photon is dissipated as vibrations and heat in the solid.

The relationship between E and k of the holes and electrons with which the photon

interacts can be represented by the parabolic band approximation (Eqs. 3.6 and 3.7

and Fig. 3.1). The statement of energy conservation (Eq. 3.12) becomes

Ee − Eh =

(
~2k2

2m∗e
+ Eg

)
−
(
−~2k2

2m∗h

)
= hν,

from which we can solve for k2

k2 =
2

~2

(
m∗em

∗
h

m∗e +m∗h

)
(hν − EG) .

This formulation allows us to rewrite the energies for the electron and hole states
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involved in absorption or emission by using Eqs. 3.6 and 3.7

Ee = EC +
m∗e

m∗e +m∗h
(hν − EG) (3.16)

Eh = EV −
m∗e

m∗e +m∗h
(hν − EG) . (3.17)

Given that energy and momentum conservation hold, a photon interacts with a

certain density of states, found by counting the number of states per unit photon

frequency per unit volume of solid. Since this quantity incorporates both the conduc-

tion and valence density of states, it is called the optical joint density of states D(ν).

[9] Equation 3.16 shows that a given conduction-band energy corresponds to a pho-

ton of a single frequency. Therefore, the number of photon states in an infinitesimal

frequency range D(ν)dν is equal to the number of electron states in an infinitesimal

range of conduction electron energies De(Ee)dEe. Hence, D(ν) = dEe
dν
De(Ee). Taking

the derivative of Ee with respect to ν and using Eq. A.1 to find De(Ee),

D(ν) =

(
2
m∗em

∗
h

m∗e +m∗h

)
(hν − EG)

π~2
. (3.18)

An electron-hole pair will only be created if the incident photon energy is greater

than or equal to the band-gap energy, so that the quantity (hν − EG) > 0.

Let us consider the existence of an electron-hole pair in a semiconductor at thermal

equilibrium. In this case, the Fermi level lies well within the band-gap (kBT �

|E − EF |) and the electron and hole occupation probabilities can be approximated

by the Fermi-Dirac distribution in Eqs. A.3 and A.5, respectively. For a photon to

be emitted by recombination, there must first be an electron-hole pair in existence.

In other words, an electron must have energy E2 in the conduction-band such that

E2 ≥ EV + EG and a hole must have energy E1 in the conduction band such that

(E1 ≤ EV ). Multiplying the probabilities of these two independent events gives the
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probability of emission

pem(ν) = [f(E2)] [1− f(E1)] . (3.19)

In the same semiconductor, we can find the probability that a photon is absorbed.

For this to occur, a hole must have some energy E2 in the conduction-band, with

probability 1− f(E2). An electron must also have an energy E1 in the valence-band,

which occurs with probability f(E1). The product of these two probabilities is the

probability of absorption

pab(ν) = [1− f(E2)] [f(E1)] . (3.20)

Dividing Eq. 3.19 by Eq. 3.20 yields

pem
pab

= exp

[
E1 − E2

kBT

]
. (3.21)

Because E1 is a valence-band energy and E2 is a conduction-band energy, the exponent

is negative, and the probability of emission is less than the probability of absorption,

pem < pab. Therefore, for a semiconductor in thermal equilibrium, stimulated emission

can’t occur.

Now, let us consider a semiconductor in quasi-equilibrium, with separate Fermi

levels for the electrons and holes, EFe and EFh , respectively. We further assume that

EFe > EFh . In a similar manner to the case of a semiconductor in thermal equilibrium,

we can write down the probabilities of emission and absorption. The difference here

is that the holes and electrons now have separate Fermi levels. Thus the requirements

for emission and absorption are the same as before

pem(ν) = [fe(E2)] [1− fh(E1)] , (3.22)

pab(ν) = [1− fe(E2)] [fh(E1)] , (3.23)
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but with the separate Fermi-Dirac distributions for the holes and electrons

fe(E) ≡ 1

1 + exp
[
E−EFe
kBT

] , (3.24)

fh(E) ≡ 1

1 + exp
[
E−EFh
kBT

] . (3.25)

We find that the ratio of emission to absorption probabilities is

pem
pabs

= exp

[
(EFe − EFh)− (E2 − E1)

kBT

]
. (3.26)

In order for the probability of emission to exceed that of absorption, the difference in

Fermi levels must exceed the difference in energy levels: (EFe −EFh) > (E2−E1). In

other words, the Fermi level for electrons must be farther above the conduction-band

edge than E2 and the Fermi level for holes must be farther below the valence-band

edge than E1. This is called the population inversion condition. Once the Fermi

level for electrons has been raised high enough into the conduction-band and that

for holes has been lowered far enough into the valence-band, stimulated emission is

probabilistically favorable in the semiconductor medium.

When an electron-hole pair has been created, a photon can be released with proba-

bility pem (Eq. 3.22). In deriving a description of the gain in a semiconductor medium,

it is useful to know, for a unit volume of the solid, the time rate of spontaneous re-

lease of photons of a given frequency (photons per time per frequency per volume),

denoted rsp. Since the joint optical density of states (Eq. 3.18) describes the density

of frequency states of an interacting photon, we divide D(ν) by the time it takes for

recombination to occur. Hence

rsp(ν) =
1

τr
D(ν)pem(ν), (3.27)
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in which we call τr the recombination lifetime of an electron-hole pair.

When an electron hole pair has been created and photons are incident upon the

solid, stimulated emission can occur. The radiation incident upon the solid is quanti-

fied as a photon-flux spectral density φν (photons per area per time per unit frequency

interval). When radiation is emitted, it interacts with a characteristic cross section

of the solid given by [9]

A(ν) ≡ λ2

8πτr
g(ν), (3.28)

where g(ν) is the lineshape function, measuring the spectral distribution of emitted

photons with wavelength λ. The rate of stimulated emission is then

rem(ν) = φν
λ2

8πτr
D(ν)pem(ν). (3.29)

The quantity rem(ν) is the number of photons emitted per time per frequency per

volume in the solid, which we shall refer to as the stimulated emission rate. Equa-

tion 3.29 shows that increasing the number of photons incident on a unit area per

unit time per unit frequency interval of the solid, φν , results in a proportional increase

in emission rate. Similarly, it seems sensible that, for a shorter pair-recombination

lifetime τr, the rate of emission is higher. By the same logic, the rate of absorption

rab is

rab(ν) = φν
λ2

8πτr
D(ν)pab(ν). (3.30)

The net rate of radiation gain is thus given by the difference between absorption and

emission rates |rem(ν)− rab(ν)|.

Finally, we are in a position to express the gain coefficient in a semiconductor and

identify the conditions under which lasing occurs. A useful conceptualization in the

discussion of laser diodes is to picture a section of semiconductor material with unit

end area, as in Fig. 3.2. In the active region of a diode laser, a photon-flux spectral

density φν(x) is incident upon a cross-sectional area at position x. An infinitesimal

28



CHAPTER 3. DIODE LASER
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x x+dx 

ϕν(x)+dϕν 

Figure 3.2: Conceptualization of gain in semiconductor media.

distance dx into the solid, at x+ dx, photons with spectral flux density φν(x) + dφν

travel through the solid. To find the number of photons per time per unity frequency

interval incident on the cross sectional area, we multiply by the net rate of radiation

gain, or [rem(ν)− rab(ν)] dx. Now, we can quantify the change in photon spectral flux

density through an infinitesimal thickness of the semiconductor:

dφν(x)

dx
=

λ2

8πτr
D(ν) [rem(ν)− rab(ν)] ≡ γνφν(x). (3.31)

Substituting in Eqs. 3.29 and 3.30 into Eq. 3.31 yields an expression for the gain

coefficient γν

γν =
λ2

8πτr
D(ν) [pem(ν)− pab(ν)] . (3.32)

We see that the rate of emission of photons must exceed the rate of absorption

(Eq. 3.31) or, alternately, the probability of emission must be greater than that of

absorption (Eq. 3.32) in order for the gain coefficient to be greater than zero. With

a gain coefficient greater than zero, light amplification can occur by the stimulated

emission of radiation.
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Figure 3.3: Diagram of the Littman TEC 500 laser diode, adapted from source [2].

3.2.2 Diode Lasers

Diode lasers are essentially composed of two components: a laser diode chip and

an external lasing cavity. The diode chip shown in Fig. 3.3 consists of an intrinsic

semiconductor layer flanked by a p-type and n-type layer, called a p-i-n junction. Be-

cause the depletion layer can extend deep into either side of a junction, the depletion

layer of the p-i junction and that of the i-n junction are such that the depletion layer

encompasses the entire intrinsic layer.[9] Electrons are injected into the n-type layer

by sending an injection current through it, also known as a photodiode current ipd.

This creates electron-hole pairs in the junction which then recombine via stimulated

and spontaneous radiative emission in the intrinsic layer, giving the intrinsic layer the

name “active layer.” The minimum current required for light to be emitted from the

photodiode is known as the threshold current ith. Above threshold, the output radia-

tion power is proportional to the difference between photodiode current and threshold

current.

The radiation emitted from the laser diode then enters the external lasing cavity.
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The external cavity consists of a mirror and a diffraction grating. The diffraction

grating sends the zeroth diffraction order out of a hole in the front plate of the laser

chasis, where it serves as the laser output. The first diffraction order is reflected

back into the external cavity. The external cavity permits a standing wave mode of

oscillation with wavelength given by λ = 2l
m

, where m = 0, 1, 2 . . . and l is the cavity-

length. Thus, by changing the length of this cavity, we can change the wavelength

of the laser output beam. Because the cavity can support multiple modes, the laser

often emits radiation at more than one peak wavelength. The spacing between these

peaks is given by

∆ν =
c

2nl
, (3.33)

where l is the length of the cavity and n is the index of refraction of the material in

the cavity. This effect arises when tuning the laser used in this project.

3.2.3 The Littman Laser TEC 500

Throughout this project, we use a Littman configuration Sacher model TEC 500 diode

laser with an output of 780 nm. We chose this laser for its high optical output power

of up to 150 mW, its narrow linewidth, the wavelength’s proximity to the 780.24 nm

85Rb emission line, its wavelength tuning capabilities, and because Jeff Dunham gave

it to us. Because the scope of this project includes understanding the function of a

diode laser, the basic tuning characteristics of the TEC 500 are discussed here.4

Figure 3.4 is a labeled photograph of the TEC 500. The diode chip in the TEC

500 is approximately 200 nm in length. The end of the chip from which radiation is

released has been antireflection coated to reduce reflectivity by a factor of 103, thereby

increasing the power of radiation emitted from the laser diode. [11] The radiation

then enters the external cavity, which is made up of a reflective diffraction grating

4A comprehensive study of the tuning characteristics of diode lasers is not one of the goals of
this project. Previous thesis students, such as Bonner (1992), have conducted such studies. [10]
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Figure 3.4: Photograph of the Sacher TEC 500 laser diode and external cavity. The
external chassis has been removed to reveal these components.

and a mirror.

The position of the mirror in the TEC 500 can be adjusted in order to alter the

length of the cavity and change the modes that the cavity supports. Coarse adjust-

ments of the mirror position in the TEC 500 can be made by turning an adjustment

screw located on the underside of the laser chassis, allowing for up to 30 nm of coarse

wavelength tunability. While the manufacturer, Sacher, claims that the wavelength

can be adjusted by 6 nm with one full turn of the coarse adjustment screw, we found

that a full turn results in approximately 4.4±0.1 nm change in wavelength.[11] Turn-

ing the screw counterclockwise when viewed from the top of the chassis decreases the

wavelength, while turning the screw clockwise increases the output wavelength.

We can make fine cavity-length adjustments by applying a voltage to a piezoelec-
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Figure 3.5: Power as a function of laser diode current for the TEC 500 laser. The
solid line is a linear fit to data points above the threshold current.

tric actuator, allowing for adjustments of ∼ 0.60 nm.[11] We measured a change in

wavelength of about 0.1 nm for a change in piezo voltage of 20 V. This was in fairly

good agreement with the manufacturer’s claim of a 0.60 nm change in wavelength

produced by a 100 V change in piezo voltage. The piezo voltage can be controlled by

computer, an external ramp signal, or manually; we will revisit these controls when

discussing our spectroscopy experimental setup in Chapter 5.

In studying the output power of the TEC 500 as a function of photodiode current

ipd, we found that there was a current threshold below which no lasing occurred

and above which the output power increased approximately linearly with photodiode

current. The topics discussed thus far in this chapter should lead us to expect this

result; the energy of the Fermi level depends upon electron concentration and the

Fermi level for electrons must be raised into the conduction-band for population

inversion to occur. As shown in Fig. 3.5, the observed threshold current was about
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37 mA, as opposed to the manufacturer’s stated value of 28 mA at 780 nm.[11]

Changing the photodiode current also led to a change in the output wavelength. This

is because the injection current causes joule heating in the diode chip, which leads to

thermal expansion. The laser often displayed multi-mode behavior, as discussed in

the previous section. Figure 3.6 superimposes four spectra of the TEC 500 output to

show how the output transitions between single-mode and multi-mode operation as

the photodiode current changes. We will see in Chapter 5 that jumps between modes

are manifested as discontinuities in absorption spectra, an undesirable feature when

probing atomic structure.

Increasing the operating temperature of the TEC 500 results in thermal expansion

of the diode chip and of the components that make up the external cavity, resulting in

a decrease in the output wavelength. Since thermal expansion is linear for the small

temperature changes in the acceptable operating temperature (22° C), the change in

output wavelength is also expected to be linear with temperature.[11][12] We found

that the laser was likely to mode-hop at certain temperatures and determined that

setting the laser diode temperature control to 20° C allowed us to tune the laser

frequency without observing mode-hopping. An understanding of these tuning char-

acteristics enables us to find satisfactory laser operation settings for use in obtaining

absorption spectra and to stabilize the laser output in the future.
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Chapter 4

Absorption Spectroscopy

Now that we understand how the diode laser output frequency changes as a function

of laser current and temperature, we must match the output wavelength to an atomic

transition in 85Rb. To do this, we obtain absorption spectra of 85Rb which will be

used in future experiments to obtain a feedback signal for laser stabilization. This

chapter investigates the structure of the atom, how atomic transitions arise, and the

theory behind absorption spectroscopy techniques.

4.1 Atomic Structure

In 1913, Danish physicist Niels Bohr proposed an atomic model for which a single

electron orbits a positively charged nucleus at discrete radaii, thus producing a dis-

crete set of allowed energy levels for electrons. While classical mechanics predicted

that electrons could take on any energy, Bohr postulated that electrons occupied

discrete energy levels given by 1

EN = −1/2α2Z2µc2 1

N2
, (4.1)

1This is the same result that is obtained from the time-independent Schrödinger equation. When
separated in spherical coordinates, the radial component yields these values for energy levels, while
the angular component gives the spherical harmonics.
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CHAPTER 4. ABSORPTION SPECTROSCOPY

where µ is the effective mass of the electron-nucleus system, α is the fine structure

constant,

µ ≡ memn

me +mn

, α ≡ e2

4πε0~c
≈ 1

137

N is a non negative integer (called the principal quantum number), me is the mass

of an electron, mn is the mass of the nucleus, and e is the charge of the electron. [13]

In his model, the electron has orbital angular momentum that is quantized in integer

values of ~,
∣∣∣~L∣∣∣ = N~. Bohr also said that when the electron changes to a lower or

higher energy level, it does so by emitting or absorbing a photon of energy equal to

the energy difference between the initial and final orbits. Bohr’s model was acclaimed

for its agreement with the emission spectrum of hydrogen predicted by the Rydberg

equation.2

In spite of its early success, the Bohr model was far from complete. First, we will

consider the angular momentum of the electron as it orbits the positively charged

nucleus due to the attractive Coulomb interaction. This is known as the orbital an-

gular momentum, denoted ~L. Second, we consider the electron’s angular momentum

of rotation about its axis, called the intrinsic angular momentum or spin ~S. These

two angular momenta couple to make the total electron angular momentum ~J , fur-

ther affecting the energy levels. Third, we will consider the nucleus’ total angular

momentum, simply called the nuclear angular momentum ~I. [15] [16]

The time-independent Schrödinger equation for an electron in an atom gives the

quantum number L associated with the orbital angular momentum of the electron.

The orbital angular momentum quantum number L can take on the values {L =

0, 1, . . . N − 2, N − 1}. Given in terms of the orbital angular momentum quantum

2The Rydberg equation says that 1
λ = R

(
1
N2

i
− 1

N2
f

)
, where R is the Rydberg constant, Ni and

Nf are the initial and final principal quantum numbers, respectively. [14]
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number, the magnitude of the angular momentum is [15]

∣∣∣~L∣∣∣ =
√
L(L+ 1)~. (4.2)

Taking a z-axis that is perpendicular to the plane of electron orbit, the projection

of ~L onto the z-axis is Lz = mL~, where the quantum number mL takes on 2L + 1

values, mL = {−L,−L + 1, . . . , L − 1, L}. Since the electron has negative electric

charge, there is a magnetic dipole moment associated with its orbit, given by [16]

~µL =
−gLµB~L

~
. (4.3)

In the second equality, gL is known as the orbital g-factor, and

µB ≡
e~

2me

= 9.27× 10−24 J

T
(4.4)

is the Bohr magneton, the customary unit for atomic magnetic moments.[15] The an-

gular momentum quantum numbers are often assigned letter values, with {s, p, d, f, g . . .}

corresponding to L = {0, 1, 2 . . .} .

The electron also has an intrinsic angular momentum ~S, also known as “spin.”

The projection of ~S onto the z-axis is Sz = mS~ = ±1
2
~, known as “spin up” and

“spin down,” respectively. The quantum number associated with spin has only one

value, S = 1
2
. Similar to the orbital angular momentum, intrinsic angular momentum

takes on values
∣∣∣~S∣∣∣ =

√
S(S + 1)~. The electron has intrinsic magnetic moment [15]

~µS = −gSµB
~

~S, (4.5)

where gS is the intrinsic g-factor.[16] Since the orbiting electron produces a magnetic

field (similar to a loop of wire), there is an interaction between the intrinsic and orbital
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angular momenta, known as spin-orbit (L-S) coupling, that results in a shift in the

energy levels of Eq. 4.1. This energy shift is given by ∆E = − ~µS · ~BL, where ~BL is the

magnetic field due to the electron orbit, which is somewhat like a current loop. To

describe the L-S coupling we say that the electron has total angular momentum given

by ~J = ~L + ~S, with quantum numbers given by J = {|L− S| , |L− S + 1| , . . . , L +

S − 1, L + S}.[15] The total electron angular momentum takes on quantized values∣∣∣ ~J∣∣∣ =
√
J(J + 1)~ and its projection onto the z-axis is Jz = mJ~. The quantum

number mJ takes on 2J + 1 values: mJ = {−J,−J + 1, . . . , J − 1, J}. Accounting for

both magnetic moment contributions, the total atomic magnetic moment is

~µJ = ~µS + ~µJ . (4.6)

The atomic structure arising from the spin-orbit interaction is known as fine structure.

Finally, we must account for the fact that the nucleus has an intrinsic angu-

lar momentum, referred to as nuclear spin. It may be apparent by now that the

nuclear spin will couple with the total electron angular momentum, resulting in

further splitting into non-degenerate energy levels. The total atomic angular mo-

mentum, then, is ~F = ~I + ~J . The total atomic angular momentum quantum

number can have value F = {|I − J | , |I − J + 1| , . . . , I + J − 1, I + J} and its

projection onto the z-axis (again, perpendicular to the plane of electron orbit) is

mF = {−F,−F + 1, . . . , F − 1, F}. In the absence of any external magnetic field,

the energy levels associated with each mF for a given F are degenerate. The atomic

structure associated with the total atomic angular momentum is produced by an

~I · ~J interaction that is similar to the ~L · ~S interaction and is referred to as hyper-

fine structure. 85Rb has I = 5
2

and 87Rb has I = 3
2
.[17] Therefore, for the 5P3/2

electronic ground state in 85Rb, the total atomic angular momentum takes on values

F = {1, 2, 3, 4}, for example.
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As an alkali metal 85Rb has one valence electron that absorbs and emits radiation

in the 5S1/2 → 5P3/2, known as its optically active electron. Figure 4.1 is an energy-

level diagram for 85Rb, showing the F = 3 hyperfine ground state to F ′ = 4 transition

that is used as the trapping transition in laser cooling. The goal of the atomic

spectroscopy studies is to match the laser output to this atomic transition.

All of the atomic structure discussed so far assumes the absence of an external

magnetic field. In 1896, Pieter Zeeman observed that, when an atom is placed in

an external magnetic field, a given spectral emission line splits into several lines. In

recognition of his observation, this effect is named the Zeeman effect. In the case that

the external magnetic field ~Bext is weak compared to the magnetic field due to the

orbital angular momentum of the electron (i.e. ~Bext < 1Tesla), the atom obeys L-S

coupling. In other words, the external magnetic field is not strong enough to overcome

the electron spin-orbit interaction. For an atom with total electron magnetic moment

~µJ , the atom will have potential energy due to its orientation in the external magnetic

field

∆E = −~µJ · ~Bext. [15] (4.7)

Equation 4.2 tells us that the atom only takes on discrete orientations in space. This

implies that the energy splitting described in Eq. 4.7 is quantized, with one energy

corresponding to each orientation of the atom in the external magnetic field. This is

known as Zeeman splitting.

At the hyperfine structure level, the potential energy due to the orientation of the

atom’s total magnetic moment in the external magnetic field lifts the degeneracy on

the energy levels with quantum number mF . The magnitude of the Zeeman splitting

is given by

∆E = µBBextgFmF , (4.8)
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52S1/2

52P3/2

780.241 368 271(27) nm
384.230 406 373(14) THz

12 816.546 784 96(45) cm-1

1.589 049 139(38) eV

1.264 888 516 3(25) GHz

1.770 843 922 8(35) GHz

3.035 732 439 0(60) GHz

F = 3

F = 2

gF o=o1/3
(0.47 MHz/G)

gF o=o-1/3
(-o0.47 MHz/G)

100.205(44) MHz

20.435(51) MHz

83.835(34) MHz

113.208(84) MHz

120.640(68) MHz

63.401(61) MHz

29.372(90) MHz

F = 4

F = 3

F = 2
F = 1

gF o=o1/2
(0.70 MHz/G)

gF o=o7/18
(0.54 MHz/G)

gF o=o1/9
(0.16 MHz/G)

gF o=o-1
(-o1.4 MHz/G)

Figure 4.1: Energy level diagram for 85Rb. After ref. [18].
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where gF is the Landé gF -factor.3 [15][16] Equation 4.8 indicates that the energy

levels split into 2F + 1 discrete values, one for each value of mF . In other words, each

projection of ~F onto an axis parallel to the external magnetic field has a Zeeman

shifted energy sub-level associated with it.

As an example, let us consider the (F = 3 → F ′ = 4) transition in 85Rb. The

F = 3 ground state splits into 7 non-degenerate energy levels with total magnetic

moment quantum number mF = {±3,±2,±1, 0}. The F ′ = 4 excited state splits

into 9 non-degenerate energy levels with total magnetic moment quantum number

mF = {±4,±3,±2,±1, 0}. The selection rules for atomic transitions at the hyperfine

structure level necessitate that ∆mF = 0,±1. [15] When undergoing a transition,

angular momentum is conserved and the atom must gain or lose a quantum of an-

gular momentum associated with the change in mF . We will revisit this concept in

Chapter 6.

4.2 Absorption and Dispersion

When white light shines on a prism the range of frequencies refract at different an-

gles. This familiar phenomenon, called dispersion, occurs because the material’s

refractive index is frequency dependent. Consider monochromatic laser light match-

ing an atomic resonance transition of a particular atom incident upon a gas of those

atoms. The atoms absorb a fraction of the laser beam, but the rest passes through

the gas. An absorption curve measures the fraction of the laser beam power that

is absorbed as a function of laser wavelength. If atoms absorbed light only at their

resonant frequency, a plot of absorption as a function of laser energy would have a

dirac-delta function shape. Due to the frequency dependence of absorption, the ab-

sorption spectrum has a finite linewidth, the shape of which can be predicted with a

classical model.

3The Landé gF -factor can be found for a given transition in rubidium in ref. [18] or [19].
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electron 

kS 

x 

z 

E 

nucleus 

Figure 4.2: Schematic diagram of the Lorentz model for absorption. The force be-
tween the (stationary) nucleus and electron is modeled by a spring with spring con-

stant kS. The incident magnetic field ~E displaces the electron from its equilibrium
position.[2] [3]

A dilute gas behaves as though each electron is bound to a specific atom, with

negligible interaction between atoms. H.A. Lorentz proposed a model of the atom

in which an electron is bound to a positively-charged nucleus by a force that can

be modeled by a spring with spring constant ks, as shown in Fig. 4.2. [2] Thus,

the electron’s potential energy in the absence of an electric field is U(x) = 1
2
ksx

2,

corresponding to a force F (x) = −ksx when the electron is displaced by a distance x

from equilibrium. An electric charge in the presence of an electric field experiences

a force. In the Lorentz model of absorption, the electron experiences the force of

the time-varying electric field of an electromagnetic wave of angular frequency ω and

maximum amplitude E0:

~FE = q ~E = qE0cos(ωt)x̂. (4.9)

Lorentz also assumed the presence of a damping force on the electron that was pro-
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portional to the electron’s velocity:

~FDamping = −γme
d~x(t)

dt
, (4.10)

where ~x(t) is the electron position vector relative to the nucleus, me is the electron

mass, and γ is the damping constant. The damping constant is the inverse of the

excitation lifetime of the upper state of the radiative transition. [2] Equating all of the

forces acting on the electron in this model, Newton’s second law governs the motion

of the electron:

me
d2x

dt2
= −ksx− γme

dx

dt
+ qE0cos(ωt). (4.11)

This second order, linear differential equation describes a damped, driven simple

harmonic oscillator. For a single-electron atom in which the electron oscillates at

natural, undamped, undriven frequency ω0 ≡
√
ks/me , the equation of motion takes

on the recognizable form:

d2x

dt2
+ γ

dx

dt
+ ω2

0x =
q

me

E0cos(ωt). (4.12)

This equation of motion for the electron leads to an expression for the absorption

coefficient a(ω) of a gas that depends on frequency. While the details of the derivation

have been deferred to Appendix B, it can be shown that for an atom such as rubidium

with a single optically active electron, [3]

a(ω) =
Nq2

meε0c

2δω0ω
2

(ω2
0 − ω2)2 + (2δω0)2ω2

(4.13)

where N is the number of Lorentz oscillators per unit volume of the gas and I have

defined the quantity δω0 ≡ γ/2. If the damping coefficient in the differential equation

is far less than the natural frequency of oscillation, γ � ω0, then δω0 is very nearly

the half-width at half-maximum of the absorption curve.
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Figure 4.3: The Lorentzian lineshape function describes absorption of radiation with
frequency close to that of the resonant transition.

If we are interested in the absorption near resonance, as is the case in absorption

spectroscopy, then we can simplify the expression for the absorption coefficient. For

a driving frequency ω near the natural frequency of oscillation ω0, |ω0 − ω| � ω, ω0.

We can use this to approximate the term

(ω2
0 − ω2)2 = [(ω0 − ω)(ω0 + ω)]2 ≈ [(ω0 − ω)(2ω)]2 .

In this approximation, the absorption coefficient takes the form

a(ω) =
Nq2

2meε0c

δω0

(ω0 − ω)2 + δω2
0

(4.14)

=
Nq2

2meε0c
L(ω). (4.15)

The function L(ω) is known as the Lorentzian lineshape function

L(ω) =
δω0

(ω0 − ω)2 + δω2
0

, (4.16)
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which is plotted in Fig. 4.3 for frequencies near resonance. Evaluating the Lorentzian

at ω ± δω0 makes it clear that δω0 is the half-width at half-maximum (HWHM) of

the Lorentzian. Thus, 2δω0 is known as the natural or Lorentzian linewidth of the

absorption spectrum.

4.3 Doppler Broadening

The absorption spectra obtained experimentally typically have a far wider profile

than that of the Lorentzian described above, because the spectrum is broadened by

the Doppler effect. Atoms in a gas have a range of velocities given by the Maxwell-

Boltzmann distribution. When laser light of wavevector ~k passes through a sample of

gas, atoms moving in the direction opposite to ~k observe the frequency of radiation

to be higher than the laser frequency in the lab frame. Conversely, for an atom

moving in the same direction as ~k, the observed frequency is less than the laser

frequency in the lab frame. Atoms in motion will absorb radiation that does not

match the resonance ω0, resulting in a broader absorption spectrum. An atom that

has a resonant transition of angular frequency ω0 when it is at rest absorbs at

ω′0 = ω0

(
1 +

v

c

)
, (4.17)

if it is moving at speed v in the direction of laser beam propagation, with velocity

v � c. Similarly, an atom moving opposite the direction of propagation absorbs at

ω′0 = ω0

(
1− v

c

)
. (4.18)

In general the Doppler-shift in angular frequency of a moving atom can be written

ω′0 − ω0 = −~k · ~v, (4.19)
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which indicates that the Doppler-shift depends upon the direction of the atom’s ve-

locity with respect to an incident laser beam. Equations 4.17 and 4.18 show that

every Doppler-shifted absorption frequency corresponds directly to a particular atom

velocity and, therefore, the number of atoms with velocities between v and v + dv

is the same as the number of atoms that absorb between ω and ω + dω. Thus, the

Maxwell Boltzmann distribution for atoms of mass ma can be written as [2]

df(v) =

√
ma

2πkBT
exp

[
−mav

2

2kBT

]
dv (4.20)

to describe the fraction of atoms absorbing between frequencies ω and ω+dω.4 Solving

Eq. 4.18 for v and making the change of variable in Eq. 4.20,

df(ω) =

√
ma

2πkBT
exp

[
−mac

2(ω − ω0)2

2kBTω2
0

](
c

ω0

dω

)
. (4.21)

As previously stated, absorption measures the fraction of atoms in a gas absorbing a

particular frequency of light. Therefore, the absorption S(ω) at a given frequency is

proportional to the fraction of atoms that absorb that frequency and can be written

S(ω) ≡ c

ω

df

dω
=

√
mac2

2πkBTω2
0

exp

[
−mac

2(ω − ω0)2

2kBTω2
0

]
. (4.22)

This expression for absorption due to the Doppler effect is known as the Doppler

lineshape function. It is useful to define a value for the HWHM of the Doppler

lineshape function

δωD ≡
ω0

c

√
2kBT

ma

ln 2, (4.23)

in terms of which Eq. 4.22 can be written

S(ω) =
1

δωD

√
ln 2

π
exp

[
−(ω − ω0)2 ln 2

δω2
D

]
. (4.24)

4The Maxwell-Boltzmann distribution (Eq. 4.20) is normalized to 1.
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Figure 4.4: The Doppler lineshape function near resonance.

The Doppler-broadened linewidth for the 5S1/2(F = 3,mF = 3) → 5P3/2(F′ =

4,mF ‘ = 4) transition in 85Rb at 300 K is 2δωD = 2π · 259 MHz [20], while the

Lorentzian linewidth is 2π · 5.98 MHz.5[22] The Doppler linewidth is greater than

the spacing between hyperfine structure peaks in 85Rb, as Fig. 4.1 shows. In or-

der to view hyperfine structure, we must use methods that minimize the effects of

Doppler-broadening in absorption spectra.

4.4 Saturated-absorption Doppler-Free Spectroscopy

In order to accurately determine the energies of the transitions that will be used in

laser cooling, we must use a method to minimize the effects of Doppler broadening in

our measurements of the rubidium spectrum. One such technique, called saturated-

absorption spectroscopy, passes two laser beams through the gas sample, instead

of one. The beams have the same frequency but different intensities. The higher

5Calculated from Eq. 4.23 using ω0 = 2π · 3.84 × 10(14)Hz for the 5S1/2 → 5P3/2 transition in
85Rb and ma = 1.41× 10−25kg.[21]
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Rb vapor cell 

group 1 
atoms 

group 3  group 2  

pump  
probe 

Figure 4.5: Schematic diagram illustrating the interaction of atoms with various
velocities with the pump and probe beams. [13][23][21]

intensity beam is called the pump beam and the lower intensity beam is called the

probe beam. As in normal fluorescence spectroscopy, the laser frequency is scanned

over a range of frequencies about resonance.

Consider a gas, discussed previously, that contains atoms with velocity compo-

nents both parallel and antiparallel to ~k. In saturated-absorption spectroscopy, a very

powerful beam called the pump beam is incident upon the gas, as shown in Fig. 4.5.

This beam saturates absorption in the gas; of the population of atoms that observe

this beam matching a resonant transition, only half can be in the excited state at a

given time.

The key to Doppler-free spectroscopy is to make a weaker probe beam propagate

through the gas in the direction opposite the pump beam, as shown in Fig. 4.5. To

reveal the advantage of this configuration, let us picture the three groups of atoms

shown in Fig. 4.5: those moving toward the probe beam (group 1), those moving

toward the pump beam (group 2) and those that are stationary (group 3). When the

laser is tuned far below or far above resonance, none of the atoms in the gas observe

their resonant frequency and the gas is transparent to the particular frequency.

When the laser beam is tuned just below resonance (ω < ω0), atoms absorb due to

a blue-shift. Group 1 atoms observe the probe beam blue-shifted to match resonance

and half of them are in the excited state. Group 1 atoms also see the pump beam
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Figure 4.6: Idealized Doppler-free saturated-absorption spectrum. The saturated-
absorption feature is centered about ω0 and has the natural Lorentzian linewidth.
[13][23][21]

red-shifted away from resonance and do not absorb from it. Group 2 atoms observe

the pump beam blue-shifted to match resonance. Atoms at rest absorb from neither

the pump beam nor the probe beam since the laser is off resonance.[13][21]

When the laser is tuned just above resonance (ω > ω0), atoms absorb due to a

red-shift. Group 1 atoms observe the pump beam red-shifted to resonance and absorb

from it, while group 2 atoms observe the probe beam red-shifted to resonance. Again,

atoms at rest do not absorb from either beam because the laser is off resonance.

If the laser is tuned to resonance (ω = ω0), atoms at rest absorb the laser light.

The group 3 atoms observe the resonant frequency from both the pump and probe

beams. Since the pump beam is more intense, group 3 atoms have higher probabilities

of absorbing from it than from the probe beam. Since only half of the group 3 atoms

can be in the excited state, a smaller fraction of atoms will absorb the probe beam

than in the off-resonance cases. Monitoring the intensity of the probe beam after it

passes through the gas reveals a sharp decrease in absorption at exactly the resonant
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frequency, as in Fig. 4.6. This feature pinpoints the frequency of an atomic transition,

thereby minimizing the effects of Doppler broadening.
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Chapter 5

Doppler-Free Spectroscopy

Experiment and Results

5.1 The Stabilization Problem

In Chapter 3, we saw how parameters such as temperature, photodiode injection

current, and cavity length affect the output of a diode laser. While tunability is a

distinct advantage of diode lasers, environmental factors such as temperature changes

and vibrations, as well as imperfections, such as drift in injection current or piezo-

actuator voltage, can cause the laser output frequency to change. Such changes are

undesirable in the laser cooling experiments that will be conducted, in which the laser

must target the 5S1/2(F = 3) → 5P3/2(F ′ = 4) cooling transition in 85Rb, which

has a natural linewidth of about 6 MHz.[18] In order to maintain a constant output

frequency, a future project will be to set up an electronic stabilization system.

The stabilization system requires feedback about the frequency that the laser

outputs. The simple Doppler-broadened absorption spectra discussed in the previous

chapter do not meet these needs, as Doppler-broadening typically obscures hyperfine

structure. Since we must lock the laser output to match the 5S1/2(F = 3) →
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5P3/2(F ′ = 4) transition in 85Rb, we assemble a Doppler-free spectroscopy apparatus

that will provide input to the laser stabilization system. We obtain Doppler-free

spectra, first without signal processing and then with lock-in amplification. The first

spectra obtained provide further insight into the tuning characteristics of the laser

and display potential problems with laser tuning. The signals obtained with lock-

in amplification display hyperfine structure of both naturally occurring isotopes of

rubidium: 87Rb and 85Rb. The 85Rb spectra can be obtained in minutes using the

current experimental setup and are of high enough resolution and amplitude to aid

in laser stabilization.

5.2 Experimental Setup

5.2.1 Optical Setup

The basic goal of the experimental setup is to cause pump and probe beams to

counterpropagate through a rubidium vapor cell, as shown in Fig. 4.5. Figure 5.1 is

a diagram of the experimental setup. The beam output from the Littman TEC 500

diode laser is first reflected by two mirrors (not shown) to adjust the beam height

to 4” above the surface of the table. A half-wave plate (λ/2) is used to attenuate

the overall beam power. The Faraday optical isolator (isolator) ensures that the

beam does not reflect off of any optics back into the lasing cavity, as this may cause

instability in the diode laser output. The isolator also rotates the polarization to

vertical. A beam splitter (splitter) divides the power of the beam approximately in

half. The transmitted beam is currently blocked, but will be used down the road in

laser cooling experiments.
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The beam sampler (sampler) plays the crucial role of partitioning the laser beam

into a powerful pump beam and a weak probe beam. Approximately 94% of the beam

is transmitted and forms the pump, while 6% is reflected as the probe beam toward

the rubidium vapor cell. The Opthos Instruments Rb vapor cell used in this exper-

iment is cylindrical, 12” long and 1” in diameter. The probe beam passes through

the cell, perpendicular to the end facets, and enters a homemade photodetector (PD)

with adjustable gain. The vapor cell contains Rb in its natural abundance, 72.17%

85Rb and 27.83% 87Rb.[24] While 85Rb is the isotope of interest in future laser cooling

experiments, we will see that both prove useful in learning about absorption spec-

troscopy.

The more powerful pump beam is reflected 90° to the chopper, which can be

easily removed or remounted. We use the chopper to obtain high-resolution spectra

of hyperfine structure but remove it when obtaining more “coarse” spectra. We will

discuss this difference in setup more in section 5.3. Several features in this setup serve

to increase the amount of overlap of the pump and probe beams as they propagate in

opposite directions through the vapor cell, thereby increasing the number of atoms

with which the beams interact simultaneously. First, two plano-convex lenses (L1 and

L2) are used to increase the radius of the pump beam by a factor of approximately

two.1 Clearly, increasing the area of the pump beam makes it easier to overlap the

two beams in the cell. Secondly, the angle θ in Fig. 5.1 was made to be approximately

2.5° to make the beams as close to antiparallel as possible after the pump reflects off

of M2.

5.2.2 Electronics Setup

The electronics setup can be divided into two components: laser control and data

acquisition (Fig. 5.2). The laser controls were discussed in detail in Chapter 3, but

1The probe beam has a radius of 0.8 mm and the pump beam is 1.4 mm in radius.
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have been modified slightly for use in the experiment. The voltage across the piezo-

actuator can be set by hand to a DC offset level, but a Hewlett Packard Model 310B

function generator provides a ramp wave to the piezo-actuator controls for frequency

control of the laser output. Increasing the amplitude and period of the triangle wave

increases the range of laser output frequency and the rate at which the laser scans

through frequency.

The photodiode voltage signal is proportional to the probe power that is transmit-

ted through the Rb vapor cell.2 When obtaining high-resolution spectra of hyperfine

structure, the photodiode signal serves as the input to a SRS Model SR530 lock-in

amplifier, as shown in Fig. 5.2. We use the chopper reference signal as the reference

input for the lock-in amplifier. We monitor the output of the lock-in amplifier on

a TDS 3012C oscilloscope that is triggered by the function generator output. We

collect the data for analysis using Tektronix Open Choice Desktop software.

2Note that, while Chapter 4 made reference to curves showing absorption of laser light as a func-
tion of laser frequency, the photodetector measures the power of the probe beam that is transmitted
through the gas. The features are still the result of absorption of light by atoms, so we continue to
refer to them as absorption features.
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5.3 Procedure

In studying the function of a diode laser (Chapter 3), we learned that the laser

produces multiple modes at certain combinations of injection current, piezo-actuator

voltage, and temperature. When scanning over a range of frequencies, we see a related

behavior that manifests itself as discontinuous frequency output, known as mode-

hopping. When trying to obtain spectra that display absorption of the probe beam

as a function of laser frequency, discontinuities in laser frequency are undesirable.

Thus, the first step in obtaining Doppler-free spectra is to find a temperature,

injection current, and piezo-actuator voltage range over which the laser can vary in

frequency continuously. We first find a piezo-actuator voltage range for which the

laser outputs a frequency that matches a resonance transition of the Rb in the cell.

To do this, we rotate the waveplate to transmit maximum power, turn the lock-in

amplifier off, and remove the chopper. With the setup simplified, we view the cell

through an infrared (IR) viewer and manually tune the piezo-actuator voltage until

we view strong fluorescence in the cell. We then set the function generator to output a

triangle wave roughly 5 V peak-to-peak and several tens of Hz in frequency. While the

piezo voltage is modulated, we view the photodiode signal on the oscilloscope, which

measures the probe power transmitted as a function of laser frequency. Figure 5.3

shows one such transmission spectrum. For a wide enough scan, the laser mode hops

back down to a lower frequency, resulting in multiple iterations of the same spectral

features, as Fig. 5.3 illustrates. While viewing the spectrum on the oscilloscope, we

manually adjust the piezo-actuator voltage and injection current until the laser scans

continuously over the desired frequency range. The spectra must be monitored on

the oscilloscope as adjustments are continuously made to the injection current and

piezo-actuator voltage.
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If settings that result in a continuous frequency scan can’t be attained, it may be

necessary to change the laser diode temperature, by 0.5°C for example, and repeat the

process outlined in the previous paragraph. We found that the TEC 500 undergoes

minimal mode-hopping in the frequency range of interest for a diode temperature of

20.0° C and an injection current of 63 mA. Once a continuous scan has been achieved,

we need not adjust the temperature. The settings used in the spectra shown in this

chapter are summarized in Table I and are typical of other spectra taken in this

project but not discussed here.

Upon finding suitable settings, we then decrease the ramp voltage so that the

laser scans over only the desired frequency range. It may be the case that one of the

feature iterations in Fig. 5.3 makes for a smoother scan than another, so we choose

that spectrum. If mode-hops continue to occur, as in Fig. 5.4, we first adjust the

piezo-actuator voltage and then the injection curent, once again.

While viewing the desired spectrum, we optimize the angle θ at which the probe

beam enters the Rb vapor cell by adjusting the mirror M3 in Fig. 5.1. We adjust the

angle of this mirror until we maximize the amplitude of the Doppler-free features.

Minor adjustments in beam overlap can increase or decrease the magnitude of the

Doppler-free features. We find it helpful to compare the Doppler-free and Doppler-

broadened spectra, such as those in Fig. 5.5, and can transition between the two

simply by blocking the pump beam with an index card.

Once we obtain satisfactory coarse spectra, we use the lock-in amplifier and chop-

per to study the hyperfine structure of a single isotope of Rb with higher-resolution.

We modify the experimental setup by putting the chopper in place and setting the

chopping frequency using the control module. Because the lock-in signal input re-

quires only a small amplitude signal from the photodetector, we attenuate the overall

beam power by rotating the half-wave plate. While incrementally attenuating the

overall laser power, we increase the lock-in amplifier sensitivity accordingly. We slow
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Table I: Experimental parameters for spectra. For all spectra, the injection current
ipd was 63 mA and the diode temperature was 20.0° C. For each scan, the ratio of
pump beam intensity to saturation intensity Ipump/Is, the ratio of probe beam inten-
sity to saturation intensity Iprobe/Is, the injection current ipd, the piezo-actuator DC
offset voltage Vpiezo, the frequency fFG and peak-to-peak voltage VFG of the triangle
wave used for laser frequency output modulation, and the lock-in amplifier sensitivity
and time constant τ are listed. For spectra taken without lock-in amplification, the
function generator frequency was typically between 1 and 10 Hz. For spectra taken
with lock-in amplification, the function generator frequency was about 0.01 Hz and
the chopping frequency was about 300 Hz.

Figure Ipump/Is Iprobe/Is ipd Vpiezo fFG VFG sensitivity τ

(mA) (V) (Hz) (V) (mV) (ms)

5.3 94.5 27.6 63 47.9 1.3 5.28 – –
5.4 94.5 27.6 65 46.6 5.26 2.20 – –
5.5 94.5 27.6 63 46.6 5.26 2.20 – –
5.8 4.8 1.4 63 45.3 0.08 0.648 10 30
5.9 4.8 1.4 63 45.3 0.10 0.430 10 30
5.10 10.6 3.5 63 45.3 0.10 0.430 10 30

the function generator frequency so that the rate at which the laser scans over a given

hyperfine structure feature is on the order of ten times the lock-in amplifier time con-

stant. We adjust these settings until we obtain spectra that resolve six Doppler-free

features over about 200 MHz for 85Rb and 500 MHz for 87Rb.
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5.4 Experimental Results

5.4.1 No Lock-In Amplification

If Chapter 4 was not a convincing argument in favor of Doppler-free spectroscopy

techniques, then the juxtaposition of Doppler-free and Doppler-broadened spectra in

Fig. 5.5 may speak more eloquently to that point. While hyperfine structure features

are still obscured by signal noise in the Doppler-broadened spectrum, we readily

resolve several absorption features in the Doppler-free spectrum in Fig. 5.5.3 As

several of these features expose hyperfine structure, Doppler-free spectroscopy puts

us closer to our experimental goal.

Still, the dominant absorption features in Fig. 5.5 are crossover peaks, which do

not represent the energy of a single hyperfine structure transition. Crossover peaks

occur when the pump and probe beams interact with a common group of atoms

that are not at rest. Atoms with velocity toward the pump beam observe the pump

beam blueshifted to one resonance transition and the probe beam redshifted to a

lower-energy resonance. Similarly, atoms with velocity away from the pump beam

observe the pump beam redshifted to one resonance transition and the probe beam

blueshifted to a higher-energy resonance. This results in crossover peaks centered

at a frequency halfway between that of two “real,” or direct-transition, peaks. The

prominence of the crossover peaks in the spectra shown in Fig. 5.5 obscures the real

peaks. Signal noise further obscures the real peaks. Resolving hyperfine structure

will require processing the photodetector signal by lock-in amplification.

3Taking Doppler-broadened spectra is as simple as blocking the pump beam in a Doppler-free
spectroscopy setup.
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5.4.2 87Rb Hyperfine Structure

Figures 5.6 and 5.7 are energy level diagrams for the two naturally occurring isotopes

of rubidium. These show that the relative spacing between hyperfine energy levels in

87Rb is greater than the spacings in 85Rb. The natural extension of this observation

to our experiment leads us to expect that the peaks in our spectra for 87Rb will be

spaced farther apart, and therefore easier to resolve than those in 85Rb. Because

of this property of the 87Rb isotope, we choose to study it first in order to gauge

the resolution of which our setup is capable and determine optimal experimental

parameters.

The improvements in resolution of the hyperfine structure features of 87Rb using

beam chopping and lock-in amplification are immediately apparent when observing

the spectrum in Fig. 5.8. This spectrum shows three crossover peaks, along with three

hyperfine structure features for transitions from the (5S1/2, F = 2) ground state,

identified in Fig. 5.8. While the crossover peaks are still much higher amplitude than

the hyperfine structure features, we now resolve hyperfine structure features that were

entirely obscured by the combined effect of the dominant crossover peaks and signal

noise when lock-in amplification was not used (Fig. 5.5). Although it is not indicative

of a single hyperfine structure transition, the prominent F ′ = 2, 3 crossover peak is a

good gauge for the resolution of our spectra, with a linewidth of 40± 4 MHz.

The 87Rb absorption features are a convenient checkpoint in this experiment be-

cause they are only about 1 GHz (Fig. 5.5) lower in frequency than the 85Rb features.

Switching between spectra of the two isotopes requires no change to the experimen-

tal setup and we can make the necessary electronics adjustments in minutes. This

spectrum exposes the current capabilities of our experimental method and enables us

to better study the isotope of Rb that will be used in laser cooling.
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52S1/2

52P3/2

780.241 368 271(27) nm
384.230 406 373(14) THz

12 816.546 784 96(45) cm-1

1.589 049 139(38) eV

1.264 888 516 3(25) GHz

1.770 843 922 8(35) GHz

3.035 732 439 0(60) GHz

F = 3

F = 2

gF o=o1/3
(0.47 MHz/G)

gF o=o-1/3
(-o0.47 MHz/G)

100.205(44) MHz

20.435(51) MHz

83.835(34) MHz

113.208(84) MHz

120.640(68) MHz

63.401(61) MHz

29.372(90) MHz

F = 4

F = 3

F = 2
F = 1

gF o=o1/2
(0.70 MHz/G)

gF o=o7/18
(0.54 MHz/G)

gF o=o1/9
(0.16 MHz/G)

gF o=o-1
(-o1.4 MHz/G)

Figure 5.6: Energy level diagram for 85Rb (after ref. [18]), as in Fig. 4.1.
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5 Dat a Tabl es 25

5
2
S1/ 2

5
2
P 3/ 2

780.241 209 686(13) nm
384.230 484 468 5(62) THz
12 816.549 389 93(21) cm- 1

1.589 049 462(38) eV

2.563 005 979 089 109(34) GHz

4.271 676 631 815 181(56) GHz

6.834 682 610 904 290(90) GHz

F  =  2

F  =  1

gF o= o1/2

(0.70 MHz/G)

gF o= o- 1/2

(- o0.70 MHz/G)

193.7407(46) MHz

72.9112(32) MHz

229.8518(56) MHz

302.0738(88) MHz

266.6500(90) MHz

156.9470(70) MHz

72.2180(40) MHz

F  =  3

F  =  2

F  =  1

F  =  0

gF o= o2/3

(0.93 MHz/G)

gF o= o2/3

(0.93 MHz/G)

gF o= o2/3

(0.93 MHz/G)

Figure 2: Rubidium 87 D2 transition hyperfine structure, with frequency splittings between the hyperfine energy
levels. The excited-state values are taken from [9], and the ground-state values are from [29]. The relative hyperfine
shifts are shown to scale within each hyperfine manifold (but visual spacings should not be compared between
manifolds or to the optical splitting). The approximate Landé gF -factors for each level are also given, with the
corresponding Zeeman splittings between adjacent magnetic sublevels.

Figure 5.7: Energy level diagram for 87Rb (after ref. [19]).
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5.4.3 85Rb Hyperfine Structure

Figure 5.9 is our Doppler-free spectrum showing 85Rb hyperfine structure for tran-

sitions from the (5S1/2, F = 3) ground state. Again, we resolve three hyperfine

transitions and three crossover peaks. When compared with Fig. 5.5, the lock-in

amplified spectrum in Fig. 5.9 reveals two more hyperfine structure features and one

more crossover peak for this ground state. As we expected, the relative proximity in

frequency of the 85Rb peaks (Fig. 5.9) reduces our ability to resolve between peaks,

when compared with the 87Rb peaks. Still, our goal is to acquire spectra that can be

used in a future laser stabilization project and the steep sides of the crossover peaks

show promise for use to this end, as we will discuss in section 5.5.

We also investigated the effects of laser power on the resolution of the transmis-

sion spectra. For the spectrum in Fig. 5.9, the pump beam was about 8 times the

saturation intensity (Is) for the transition and the probe beam was about 1.4Is. This

experimental parameter adheres closely to those used in similar experiments, which

recommend using a probe beam intensity of about 2Is.
4 [25] Figure 5.10 shows the

effect of proportionally increasing both the pump and probe beam powers by rotating

the half-wave plate (Fig. 5.1). The pump and probe powers used to obtain this spectra

are about 17.6Is and 3.5Is, respectively. We observe the effects of power broadening,

in which a high intensity laser beam stimulates emission of radiation in atoms of the

gas. The effect is to decrease the excitation lifetime of atoms in the gas. As we saw

in Chapter 4, the excitation lifetime is inversely related to the linewidth, so power

broadening increases the linewidth of spectral features. It also seems to increase the

amplitude of the crossover peaks relative to the direct transition peaks.

4The saturation intensity for the 85Rb 5S1/2(F = 3, mF = ±3) → 5P3/2(F ′ = 4, m′F = ±3)
transition in 85Rb is 1.66932(35) mW/cm2.[18]
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5.5 Discussion and Future Work

The spectra obtained here display how the Doppler-free spectroscopy experiments

we used vastly improve the resolution of transmission spectra. We demonstrate the

ability to resolve hyperfine structure features in both naturally occurring isotopes of

rubidium. While the crossover peaks are certainly the most prominent features in our

spectra, we can use this to our advantage. Electronic stabilization units are typically

able to lock onto features with large negative or positive derivatives. For this reason,

we believe that spectra like the ones obtained here will serve as an adequate feedback

signal for laser-stabilization electronics.

Still, several improvements to the existing Doppler-free spectroscopy setup may

merit investigation. First of all, the optics table should be floated to minimize the

effects of mechanical vibrations in the laboratory and the building. Another potential

avenue for improvement is to study the effects of varying the relative pump and probe

intensities. Previous works suggest that an optimal ratio of pump to probe intensity

may improve resolution of hyperfine spectral features. [26] The heavy lifting in this

spectroscopy experiment is done; we aligned the optics, set up the electronics, and

after much ado, found laser settings that output radiation continuously over the

frequency range of interest. With the existing setup, spectroscopy experiments can

be easily repeated, and systematically varying these experimental parameters should

not be an immense undertaking.

A laser stabilization module is in the mail. We chose the Sacher LB2001 High-

Speed Dual Path Servo Controller for its compatibility with our Sacher diode laser and

potential ease of use with our spectroscopy experimental setup. Its features include

the ability to lock the laser output to the side of a peak. This is promising for laser

stabilization because of the prominence of the F ′ = 3, 4 crossover peak adjacent to

the 85Rb 5S1/2(F = 3)→ 5P3/2(F ′ = 4) transition in Figs. 5.9 and 5.10. The output

frequency of the laser may then be shifted to the correct F ′ = 4 transition frequency
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using an acousto-optical modulator. The extent of our experimental work for this

project ends with Doppler-free spectroscopy and we allocate laser stabilization, the

next step down the road to laser cooling, to future work.
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Chapter 6

Laser Cooling

Once the laser has been stabilized, the next step is to begin assembly of the laser

cooling apparatus. Indeed, there is still extensive work to be done before this can

happen and it is far beyond the scope of this project, experimentally. Nevertheless,

this chapter may be considered optional reading, perhaps as a primer for the physics

underlying laser cooling, to satisfy curiosity, or to put the eventual goals of the project

on one’s radar.

In this chapter, I describe the theory of how radiation exerts forces on atoms in

a dilute gas such as rubidium vapor. The use of radiation pressure alone to cool a

gas creates a slowly-moving ensemble of atoms that is known as “optical molasses.”

Although optical molasses is a laser-cooled gas, it is not confined spatially. One

technique of trapping atoms, explored here, is the use of a magneto-optical trap

(MOT), which exploits the hyperfine structure of the atom in order to generate a

spatially-dependent force on cold atoms.

6.1 Optical Molasses

In Chapter 4, I discussed how an atom with non-zero velocity ~v in a gas will see the

laser frequency ωL Doppler shifted. For laser light of wave-vector ~k incident upon
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+x v k x -k x ωL < ω0 

Figure 6.1: An atom with counter-propagating laser beams incident upon it.

such an atom, the observed shift in frequency is ~k · ~v. Let us consider the case in

which the laser is tuned below the resonant frequency, or red-detuned, and is incident

upon a one-dimensional gas, as shown in Fig. 6.1. If two beams counter-propagate

as they do in a laser-cooling apparatus, then the atom is more likely to absorb a

photon from the beam with wave-vector opposite to its velocity because it will see

the radiation blue-shifted toward resonance.

During each scattering event, that is the absorption and emission of a photon,

linear momentum is conserved. Therefore, the atom’s change in momentum is equal

to the momentum carried by the absorbed or emitted photon:

∆~p = ∆~pabsorbed + ∆~pemitted

= ~~kabsorbed + ~~kemitted.

The atom absorbs a photon from the laser beam and experiences a change in mo-

mentum in the direction of laser beam propagation. Because an atom emits photons

isotropically, the change in momentum due to emission averages to zero and the total

change in momentum, on average, is in the direction of propagation of the absorbed

photon:

〈∆~p〉 = ~~kabsorbed.

According to Newton’s second law, if the momentum of an atom changes with

time, there is a net force acting upon the atom: ~F = d~p
dt

. As we’ve seen already, an

atom’s change in momentum during absorption is equal to the momentum carried by

the absorbed photon. Only an atom in the excited state has absorbed a photon and
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experienced a force due to the incident laser beam. Therefore, the average amount

of momentum delivered to the atom through absorption is equal to the amount of

momentum delivered by a photon times the probability ρee that the atom absorbed

the photon, i.e. the probability of finding that atom in the excited state.

The probability ρee that the atom has absorbed the photon must depend upon the

rate at which absorption events occur. This rate is given by the inverse of the decay

rate (2δω0)−1.1 In Chapter 4, we saw that the absorption is a function of frequency.

It seems sensible, then, that ρee depends upon the laser detuning ∆0 = ωL − ω0.

Conversely, for fixed laser detuning, the probability that an atom becomes excited

depends upon its velocity, as an atom sees a Doppler shift in the incident radiation of

~k ·~v. Furthermore, the intensity of the radiation should affect whether or not an atom

becomes excited; higher intensity means that more photons will be incident upon the

atom, thereby increasing the probability of excitation, until absorption is saturated.

These factors affecting the probability of excited state occupancy are combined in the

expression for ρee,
2 [20] [21]

ρee =
s0/2

1 + s0 +
(

∆
δω0

)2 . (6.1)

In the expression above, s0 is the ratio of the laser intensity IL to the saturation

intensity Is:

s0 ≡
IL
Is

=
|Ω|2

2 (δω0)2 . (6.2)

The quantity Ω in Eq. 6.2 is the Rabi Frequency, a measure of the coupling between

the electric field of an electromagnetic wave and the atom.3 [21] I will refer to ∆ as

1For the
(
5S1/2 → 5P3/2

)
transition in 85Rb, the decay rate is 2δω0 = 2π · 6.0666(18) MHz. [18]

2ρee is a diagonal element of the density matrix. For a complete derivation of the density matrix,
see [20]. For values of the density matrix elements associate with 85Rb, see [18].

3Rabi solved the differential equations that described the coupling between the Hamiltonian for
the electric field of an electomagnetic wave and the quantum mechanical wavefunction for an electron
bound to an atom. For a more thorough description of the Rabi Frequency see [20].
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the “effective detuning” experienced by an atom:

∆ = ∆0 − ~k · ~v. (6.3)

Note that ∆ is smallest when the Doppler shift matches the laser detuning and that,

for an atom with zero velocity, the effective detuning ∆ reduces to the laser detuning

∆0.

Scattering events occur at a rate ρee(2δω0), each of which has a change in momen-

tum of ~~k. Therefore, [21] [27]

~F =
∆~p

∆t
(6.4)

=
(
~~k
)

(ρee (2δω0)) (6.5)

= ~~k
δω0s0

1 + s0 +
(

∆
δω0

)2 . (6.6)

Some features of this force are worth noting. Foremost, the direction of the force is

the same as that of the incident photon. Secondly, the force does not depend on the

atom’s position in space. Figure 6.2 shows the effect of increasing s0, the ratio of

incident laser beam intensity to the saturation intensity of the gas. The force is at

half of its maximum value when s0 = 1 and has reached 90% of its maximum value

when s0 = 9. In the long run, the force increases only modestly with large increases in

laser beam intensity. Figure 6.3 shows the force as a function of the ratio of detuning

∆ to the half-width at half-maximum δω0 of the transition for an atom at rest with

s0 = 1. We see here that the force on an atom has the same dependence on detuning

as does absorption; both have the form of a Lorentzian function.

When the temperature of a gas of atoms becomes low enough, Eq. 6.6 reduces

to a more recognizable form. For a fixed detuning, when atoms in a gas slow down,

the Doppler shift in frequency becomes much smaller than the detuning of the laser:
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Ñk∆Ω0

Figure 6.2: The magnitude of the force (Eq. 6.6) on an atom at rest, with ∆0 = 0, as
a function of intensity.

∣∣∣~k · ~v∣∣∣� ∆. The Doppler shift in this limit also becomes much less than the natural

linewidth of the atomic transition:
∣∣∣~k · ~v∣∣∣� 2δω0. In this limit,[27]

F = 4~ks0
∆/δω0[

1 +
(

∆
δω0

)2
]2kv (6.7)

= −βv, (6.8)

where

β ≡ 4~k2s0
∆/δω0[

1 +
(

∆
δω0

)2
]2 .

For atoms with low velocity, we see that the force on an atom can be approximated

by a dissipative force that is proportional to velocity.
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Figure 6.3: Magnitude of the force (Eq. 6.6) on an atom due to an electromagnetic
wave as a function of the ratio of detuning ∆ to half of the natural linewidth δω0,
represented by the dimensionless parameters F

~kδω0
and s0. Here, s0 is taken to be

one.

6.2 The Doppler Limit

When deriving an expression for the force, I considered the time-averaged momen-

tum due to scattering events. Although the force described in the previous section

dissipates kinetic energy from the atoms, I have not yet accounted for the random

nature of the scattering processes; quantum fluctuations in these events cause heating

in the gas. In this section, we see that there is a quantum limit in temperature when

cooling a gas by radiation pressure alone.

Consider a particle in a one-dimensional gas, as in Fig. 6.1, but with zero velocity.

The change in momentum of this particle can be modeled by a random walk; the

atom is equally likely to absorb from the beam traveling to the right as it is to absorb

from the beam traveling to the left. Indeed, the expectation value for the net change
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in momentum of the atom in this case is zero: 〈p〉 = 0. The expected value of the

square of momentum, however, is not zero: 〈p2〉 = (~k)2. Calling the total photon

scattering rate R due to the two counter-propagating beams, [27]

d〈p2〉
dt

= 2(~k)2R. (6.9)

The total scattering rate

R ≡ |Fleft|+ |Fright|
~k

(6.10)

is simply the sum of the magnitudes of the force on the atom due to the beam

traveling to the left, Fleft, and that due to the beam traveling to the right, Fright

divided by the momentum transferred during each scattering event. For the one-

dimensional random walk, there are an average of two steps per scattering event,

which introduces the factor of two in Eq. 6.9.

Because kinetic energy is proportional to p2, the randomness of the scattering

events leads to an increase in the kinetic energy of the atoms in a gas, or heating:

(
dK

dt

)
heating

=
d

dt

〈p2〉
2ma

(6.11)

=
(~k)2

ma

R (6.12)

=
(~k)2

ma

2δω0s0

1 +
(

∆
δω0

)2 . (6.13)

In the third equality, I substituted for the total scattering rate R (Eq. 6.10), but

used the low-temperature approximation discussed in the previous section. When the

system is at thermodynamic equilibrium, the contribution to the kinetic energy due

to heating equals that due to the dissipative cooling force: [27]

(~k)2

ma

2δω0s0

1 +
(

∆
δω0

)2 = −β〈v2〉, (6.14)
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so that

〈v2〉 =
~δω0

2ma

1 + ∆/δω0

∆/δω0

. (6.15)

Now, the equipartition theorem states that each degree of freedom has 1
2
kBT of energy.

Equating this with the kinetic energy of an atom in the one-dimensional case,

1

2
kBT =

1

2
ma〈v2〉. (6.16)

The mean squared velocity is at a minimum when
(

∆
δω0

)
= −1 so that the temperature

of a gas cooled by radiation pressure alone takes on a minimum value TD of

TD =
~δω0

kB
. (6.17)

For 85Rb, the Doppler limit temperature is TD = 145.57µK.[18] We have seen in this

section atoms cooled by radiation pressure alone experience a force that is independent

of position and that their kinetic energies are subject to the quantum fluctuations

inherent in the absorption process. In order to cool this optical molasses further, the

atoms must be trapped by a spatially-dependent force.

6.3 The Magneto-Optical Trap

If the random nature of absorption and emission events leads to heating in a gas of

atoms, then one might ask if it is possible to make the process less random; that is,

to make an atom absorb only a beam that will provide it with a force toward the

center of the trap. In 1987, E. L. Raab and a team at AT&T Bell Labs developed an

experimental setup called a magneto-optical trap which Zeeman-shifted the energy

levels of the atoms in order to create a spatially-dependent trapping force for a gas of

cold neutral sodium atoms. In this section, we explore the physics that makes such a

trapping configuration possible.
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Raab et al. applied a spatially-dependent, external magnetic field to their cold

gas of atoms, resulting in Zeeman-shifting and the appearance of hyperfine atomic

structure. In section 4.1, we saw that the hyperfine structure energy levels split into

2F + 1 non-degenerate energy levels in the presence of a magnetic field external to

the atom. Each of these splittings has a quantum number mF associated with it, for

the projection of the total atomic angular momentum vector ~F onto an axis parallel

to the magnetic field. The shift in energy is given by Eq. 4.8

∆E = ~µ · ~Bext = µBBextgFmF , (6.18)

where, µ is the total atomic magnetic moment, µB is the Bohr Magneton, gF is the

Landé gF -factor, and Bext is the magnitude of the applied magnetic field. In this

section, consider a hypothetical atom with F = 0 ground state and F ′ = 1 excited

state. In the presence of an external magnetic field, the ground state experiences

no Zeeman-shift, while the excited state splits into levels denoted by total magnetic

moment quantum numbers m′F = ±1, 0. Equation 6.18 shows how the magnitude of

this Zeeman-shift in energy depends upon the orientation of the total atomic magnetic

moment vector ~µ in the magnetic field.

The magnetic field configuration that Raab et al. used has become a standard

in magneto-optical trapping. For the purposes of this discussion, we will consider

an atom at rest in a one-dimensional gas in the presence of a spatially-dependent

magnetic field, as shown in Fig. 6.4. The magnetic field points outward from the

origin and increases in strength with increasing x so that it is of the form

~Bext = B0xx̂, (6.19)

where B0 is a positive constant with dimensions of magnetic field over length. Now,

the Zeeman-shift in energy of an atom in the magnetic field ~Bext depends not only
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B 
x 

x=0 

Figure 6.4: The spatial dependence of the magnetic field in a MOT, in the simple
case of a one-dimensional gas. The magnitude of the magnetic field B is indicated by
the length of the arrows.

upon the orientation of the total atomic magnetic moment in the magnetic field,

but also upon the atom’s position. Figure 6.5 shows the spatial dependence of the

Zeeman-shift in energy for three possible orientations of the total atomic magnetic

moment in the magnetic field. For example, an atom in the excited state with ~µ

pointing in the +x̂ direction in Fig. 6.4 would experience a positive Zeeman-shift for

x < 0, zero Zeeman-shift at the origin where
∣∣∣ ~Bext

∣∣∣ = 0, and a negative Zeeman-shift

for x > 0.

In the last section, I implicitly discussed the force on an atom when ~B 6= ~0. When

~B 6= ~0, the effective detuning ∆ (Eq. 6.3) is actually [21] [27]

∆ = ∆0 −
~µ · ~Bext

~
− ~k · ~v. (6.20)

This implies that the magnitude of the force given by Eq. 6.7 depends upon both

an atom’s position in space and upon the orientation of its total atomic magnetic

moment.

I will limit the discussion to an atom at rest, making the last term in Eq. 6.20

zero. I still have not described a configuration that would make an atom more likely

to absorb a photon from a laser beam traveling to the right or to the left. In order

to trap atoms at the origin, the experimental setup must make an atom at x < 0

more likely to absorb a photon from a laser beam propagating in the +x̂ direction.

Similarly, an atom at x > 0 should be more likely to absorb from a laser beam
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Figure 6.5: Schematic showing the spatial dependence of the Zeeman-shift in the
energy of hyperfine structure states for three different orientations of the total atomic
magnetic moment: one in the +x̂ direction (red), one perpendicular to ~Bext (green),
and one in the −x̂ direction (violet). The energy splittings are not to scale.

propagating in the −x̂ direction. The answer to this problem lies in the conservation

of angular momentum in photon-atom interactions.

In a MOT experimental setup, circularly polarized radiation is used because,

unlike linearly polarized radiation, circularly polarized radiation (section 2.2) has

angular momentum in addition to linear momentum. Recalling the selection rules

for atomic transitions within an atom’s hyperfine structure, left circularly polarized

radiation (σ+) drives a transition with a change in the total atomic magnetic mo-

ment quantum number ∆mF = +1, right circularly polarized radiation (σ−) drives

transitions with ∆mf = −1, and linearly polarized radiation excites atoms so that

∆mF = 0. [18] [4]
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Figure 6.6: Conservation of momentum dictates from which beam an atom with
Zeeman-shifted energy levels will absorb a photon.

If counter-propagating σ− and σ+ beams are incident upon ground state atoms,

as in Fig. 6.6, then a given atom is more likely to absorb from one beam than the

other. Consider, for example, an atom in the ground state at x < 0 with total atomic

magnetic moment pointing in the −x̂ direction. The selection rules for absorption

dictate that ∆mF = 0,±1. Figure 6.6 shows that the next highest excited state energy

is the (F ′ = 1,mF ′ = +1) state. If the laser detuning ∆0 matches the detuning due

to the magnetic field ~µ · ~Bext, then the atom will absorb σ+ radiation and undergo the

transition to the (F = 1,mF = +1) state. According to Eq. 6.6 an atom absorbing

a photon from a laser beam propagating in the +x̂ direction will experience a force

in the same direction. Thus, the atom in this example experiences a force toward

the center. By a similar argument, an atom at rest at x > 0 will experience a force
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Figure 6.7: A typical MOT configuration using anti-Helmholtz coils to generate a
magnetic field. The field lines represent the field lines close to the center of the trap,
where the field strength can be approximated as linear.

to the left, toward the center. In this way, the magnetic field in a MOT creates a

spatially-dependent restoring force for atoms in the gas.

This scheme can be readily extended to three dimensions. A pair of anti-Helmholtz

coils generate the magnetic field, as shown in Fig. 6.7, which is approximately linear

near the center of the trap. Beams of σ− and σ+ counter-propagate along the three

orthogonal axes in a cartesian coördinate system in this magnetic field configuration.

This configuration creates a three-dimensional restoring force on the atoms in the

trap. The future goals of this project include the implementation of a trap like this

one.
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Appendix A

Intrinsic Carrier Concentration in

Semiconductors

In section 3.1.1, we make reference to the intrinsic carrier concentration, which we

find by first deriving an expression for the density of states. The density of states

for electrons in the conduction band De(E) counts the number of states in an energy

range dE. To find the density of states, we first solve Eq. 3.10,

EF =
~2

2m∗e

(
3π2N

V

)2/3

,

for N and then differentiate with respect to an energy E2 in the conduction band.1

The result

dN

dE2

= De(E2) =
V

2π2

(
2m∗e
~2

)3/2

(E2 − EC)1/2, (A.1)

gives us the number of states found in an infinitessimal range of condution band

energies, between E2 and E2 + dE2. To count the number of states per unit volume

in the conduction band, we integrate the density of states times the probability of

1I introduce this notation because, although E2 is simply a variable of integration here, this
notation clarifies results in section 3.2.1.
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occupancy of a given state over all energies within the conduction band:

n ≡ N

V
=

1

V

∞∫
EC

De(E2)f(E2)dE2. (A.2)

The Fermi-Dirac distribution (Eq. 3.8) describes the probability that an electron has

an energy E2 in the conduction band, E2 ≥ EC > EF . At temperatures close to room

temperature, kBT � E2−EF and we can approximate the Fermi-Dirac distribution

as

f(E) ≈ exp

[
EF − E2

kBT

]
. (A.3)

This assumption is valid when the Fermi level lies within the band gap, several fac-

tors of kBT away from both the conduction and valence bands. Such a condition

implies that the electrons in the conduction band are in thermal equilibrium amongst

themselves, as are the holes in the valence band, and the holes and electrons are in

thermal equilibrium with one another. In this case, the semiconductor is simply said

to be in thermal equilibrium. Performing the integration in Eq. A.2 yields

n = 2

(
m∗ekBT

2π~2

)3/2

exp

[
EF − EC
kBT

]
. (A.4)

Here we see that the conduction band electron density has a somewhat complicated

temperature dependence, but that the temperature term in the exponent dominates

this dependence. Consequently, we expect the density of states De(E) to be higher

for low temperatures.

When the Fermi level is in the band gap, several values of kBT away from the

valence band edge (kBT � EF − EV ), we can also determine the hole concentration.

Given this condition, the probability of occupancy for a hole in the valence band with
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some energy E1 < EF is

1− f(E1) ≈ exp

[
−(EF − E1)

kBT

]
. (A.5)

By a similar derivation, the density of states for holes in the valence band is

Dh(E1) =
V

2π

(
2m∗h
~2

)3/2

(EV − E1)1/2. (A.6)

This can be derived by an argument similar to that of Eq. A.1 using the effective

mass of a hole m∗h. Now, counting the number of hole states P per unit volume in the

valence band, we integrate the density of states times the hole occupation probability

over all energies within the valence band

p ≡ P

V
=

1

V

EV∫
−∞

De(EV − E1) (1− f(E1)) dE1 (A.7)

= 2

(
m∗hkBT

2π~2

)3/2

exp

[
EV − EF
kBT

]
. (A.8)

The law of mass action states that, at equilibrium, the product of n and p must be a

constant, which we define as the square of the intrinsic concentration ni:

np ≡ n2
i . (A.9)

Taking the square root of the hole and electron concentrations

ni = 2

(
kBT

~2

)3/2

(m∗em
∗
h)

3/4 exp

[
Eg

2kBT

]
, (A.10)

where Eg = EV − EC , yields a formulation for intrinsic carrier concentration that is

independent of Fermi level energy EF .
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The Lorentz Model

Recall that, in section 4.2, we equated all of the forces on an electron in the Lorentz

Model: the spring force, the frictional damping force, and the force on the charge

due to the electric field of an electromagnetic wave. Beginning with the differential

equation of motion for this situation, Eq. 4.12,

d2x

dt2
+ γ

dx

dt
+ ω2

0x =
q

me

E0cos(ωt), (B.1)

the steady state solution to the differential equation is oscillatory x̃(t) = x̃0 exp [−iωt],

where x̃ is used to denote a complex quantity. Substituting this solution into Eq. B.1,

we find that

x̃0 =
q/me

ω2
0 − ω2 − iγω

E0.

The electric dipole moment p(t) of the atom is the real part of the expression

p̃(t) = qx̃(t) =
q2/me

ω2
0 − ω2 − iγω

E0e
−i(ωt−kz). (B.2)

In Chapter 2, the atomic polarizability α was defined as the proportionality constant

between electric dipole moment and electric field. In the case of the dipole moment

given in Eq. B.2, there is no real atomic polarizability that can describe the relation-
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ship between the electric field and the dipole moment. This is because the dipole

moment lags behind the electric field by an angle of arctan
[

γω
(ω2

0−ω2)

]
.

There is, however, a complex polarizability α̃(ω) that can describe the relationship

p̃(t) = α̃(ω)Ẽ(t), (B.3)

in which the complex polarizability

α̃(ω) =
q2/me

ω2
0 − ω2 − iγω

. (B.4)

The complex polarization is simply the polarizability multiplied by the number of

atoms in a given volume of the gas, N .

~̃P (t) = Nα̃(ω) ~̃E(t). (B.5)

This formulation allows us to use the wave equation in terms of polarization (Eq. 2.6),

∇2 ~̃E(t)− 1

c2

∂2 ~̃E(t)

∂t2
=

1

ε0c2

∂2 ~̃P (t)

∂t2
.

Substituting the complex polarization ~̃P (t) of Eq. B.5 and solving for k2, we find that

k must satisfy the dispersion relation

k2 =
ω2

c2

(
1 +

Nα̃(ω)

ε0

)
. (B.6)

From Eq. B.6 we can recognize the quantity

n(ω) =

(
1 +

Nα̃(ω)

ε0

)1/2

(B.7)

= nre + inim (B.8)
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as the frequency-dependent index of refraction. The dispersion relation (Eq. B.6)

reveals a remarkable difference between electromagnetic radiation propagating in vac-

uum and that passing through a gas. Rewriting the expression for the electric field

shows that the electric field is not purely oscillatory as it propagates through a gas:

~̃E(z, t) = E0 exp [−i(ωt− kz)] ẑ (B.9)

= E0 exp

[
−iω(t− n(ω)z

c
)

]
ẑ (B.10)

= E0 exp

[
−iω(t− nre(ω)z

c
)

]
exp

[
−nim(ω)ωz

c

]
ẑ. (B.11)

The second exponential term in Eq. B.11 is a decaying exponential that depends on

frequency ω and propagation distance z. In this way, the Lorentz model describes

the absorption of light by a gas of atoms, with the absorption coefficient defined as

the exponential decay parameter

a(ω) ≡ nim(ω)

c
ω (B.12)

=
Nq2

ε0mec

γω2

(ω2
0 − ω2)2 + γ2ω2

. (B.13)
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