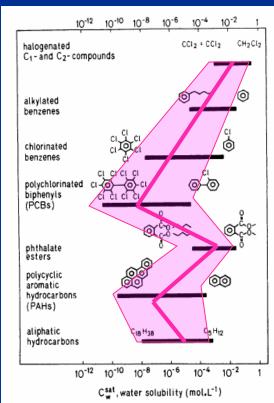
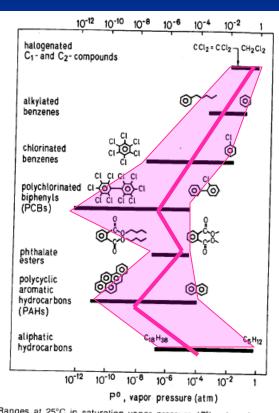

Range of Henry's Law Constants

increases

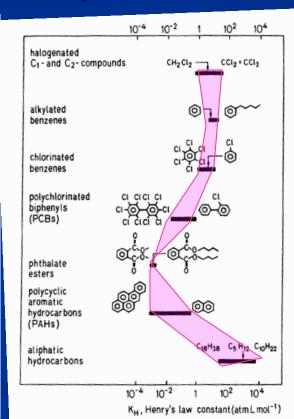
compounds.


increases

Relative range in values


solubility

Vapor pressure


Henry's coefficient

Ranges in water solubilities (C_w^{sal}) of some important classes

Ranges at 25°C in saturation vapor pressure (P") values for some in ganic compounds.

Ranges in Henry's Law constants (K_H) for some important classes of c

Presentations: powerpoint on go/echem

- 15 minutes + 5 for questions
- Paper of your choosing, approved by me
 - Environmental Science & Technology (ACS)
 - Organic compounds in the environment
 - Chemistry & Experimental focus
- Sources beyond the article are expected
 - Textbooks/online sources to refine understanding of terms, particularly in the Methods section, as needed
 - at least 2 important sources cited in the Discussion of your article integrate other literature findings that your article is being interpreted in light of

Intermolecular force LFER for K_H

$$\ln \gamma_{iw} = -\ln p_{iL}^{\circ} - 0.572 \left[(V_i)^{\frac{2}{3}} \left(\frac{n_{Di}^2 - 1}{n_{Di}^2 + 2} \right) \right] - 5.78\pi_i - 8.77(\alpha_i) - 11.1(\beta_i) + 0.0472V_i + 9.49$$

$$\ln K_{i,h}(-) = -0.540 \left[\left(V_i \right)^{2/3} \left(\frac{n_{Di}^2 - 1}{n_{Di}^2 + 2} \right) \right] - 5.71 \pi_i - 8.74 \alpha_i - 11.2 \beta_i + 0.0459 V_i + 2.25$$

London dispersion forces

 n_D = refractive index (polarizability, Table 3.1)

Dipolar (HDA) interactions

 π = "pi term" (Table 5.5)

HDA interactions

H-donor (α) & H-acceptor (β) terms (Table 4.3)

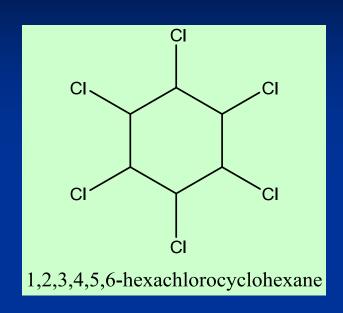
Entropy/size

Volume term

K_H resources

Environ. Sci. Technol. 2010, 44, 352

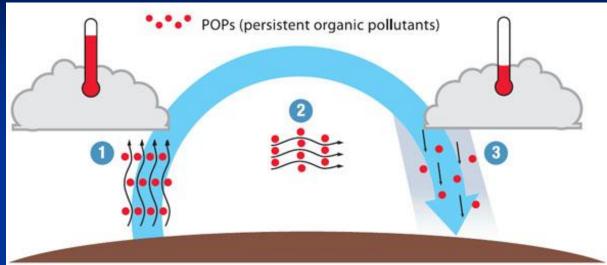
Genotoxicity of Water Concentrates from Recreational Pools after Various Disinfection Methods


DANAE LIVIAC,[†]
ELIZABETH D. WAGNER,[‡]
WILLIAM A. MITCH,[§]
MATTHEW J. ALTONJI,[§] AND
MICHAEL J. PLEWA*,[‡]

- Killer Showers
- Killer Hot Tubs
- **■** EPA Estimator

to swimmir (1). Hot tul recreationa infectious c lighted an a

Lindane Global Transport


- \sim y-HCH a "toxic 21" POP
- $K_{aw}(25 \, {}^{\circ}C) = 0.24 \, Pa \, m^3/mol$
- $\Delta H_{aw} (25 \, {}^{\circ}C) = 61400 \, J/mol$
- $R = 8.314 \text{ Pa m}^3/(\text{mol K})$

Compare [L]_w in Lake Champlain (25 °C) near a farm that uses it on its crops with...

[L]_w in the Arctic (1 °C)

given that the [L]_a is 100 and 10 pg/m³ in each location, respectively.

Grasshopper effect: spatial & temporal

Warmer areas

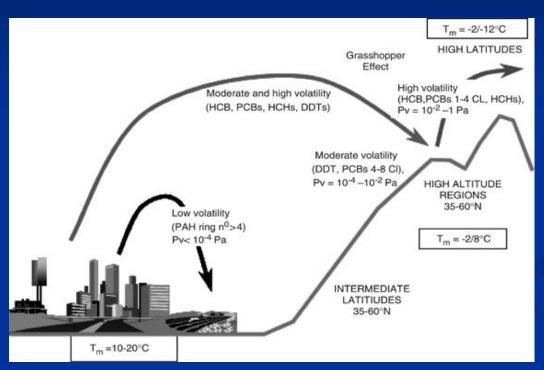
Net evaporation higher K_H

(source)

Colder areas

Net condensation

Lower K_H (sink)


Elevational, latitudinal

Daily, seasonal

Coastal/continental

http://www.ainc-inac.gc.ca/ai/scr/nt/images/nt/pop-pop-1-eng.jpg

Global Distillation

More volatile
 compounds are
 transported faster
 (atmosphere
 moves faster than
 ocean)