Range of Henry's Law Constants

Air partitioning increases

Water partitioning increases

Figure 6.2 Ranges in Henry's Law constants $\left(K_{H}\right)$ for some important classes of organic compounds.

Relative range in values

solubility

Vapor pressure

Henry's coefficient

Ranges in water solubilities $\left(C_{\mathrm{w}}^{5 \text { st }}\right)$ of some important classes

Ranges at $25^{\circ} \mathrm{C}$ in saturation vapor pressure (ρ°) values for some janic compounds.

Ranges in Henry's Law constants (K_{H}) for some important classes of C

Presentations: powerpoint on go/echem

- 15 minutes +5 for questions
- Paper of your choosing, approved by me
- Environmental Science \& Technology (ACS)
- Organic compounds in the environment
- Chemistry \& Experimental focus
- Sources beyond the article are expected
- Textbooks/online sources to refine understanding of terms, particularly in the Methods section, as needed
- at least 2 important sources cited in the Discussion of your article - integrate other literature findings that your article is being interpreted in light of

Intermolecular force LFER for \mathbf{K}_{H}

$$
\ln \gamma_{i w}=-\ln p_{i L}^{\circ}-0.572\left[\left(V_{i}\right)^{2 / 3}\left(\frac{n_{D i}^{2}-1}{n_{D i}^{2}+2}\right)\right]-5.78 \pi_{i}-8.77\left(\alpha_{i}\right)-11.1\left(\beta_{i}\right)+0.0472 V_{i}+9.49
$$

$$
\ln K_{i, h}(-)=-0.540\left[\left(V_{i}\right)^{2 / 3}\left(\frac{n_{D i}^{2}-1}{n_{D i}^{2}+2}\right)\right]-5.71 \pi_{i}-8.74 \alpha_{i}-11.2 \beta_{i}+0.0459 V_{i}+2.25
$$

London dispersion forces $\mathrm{n}_{\mathrm{D}}=$ refractive index (polarizability, Table 3.1)

Dipolar (HDA) interactions $\pi=$ "pi term" (Table 5.5)

HDA interactions
H-donor (α) \& H acceptor (β) terms (Table 4.3)

Entropy/size
Volume term

K_{H} resources

Environ. Sci. Technol. 2010, 44, 352

Genotoxicity of Water Concentrates from Recreational Pools after Various Disinfection Methods

DANAE LIVIAC, ${ }^{+}$
ELIZABETH D. WAGNER, ${ }^{\ddagger}$
WILLIAM A. MITCH, ${ }^{\text {® }}$
MATTHEW J. ALTONJI, ${ }^{\S}$ AND
MICHAEL J. PLEWA* ${ }^{*}$

- Killer Showers
- Killer Hot Tubs
- EPA Estimator

http:/ /www.undercovercaterer.com/wp-content/uploads/2010/09/hot-tub.jpg

Lindane Global Transport

- γ-HCH - a "toxic 21" POP
- $\mathrm{K}_{\mathrm{aw}}\left(25^{\circ} \mathrm{C}\right)=0.24 \mathrm{~Pa} \mathrm{~m} / \mathrm{mol}$
- $\Delta \mathrm{H}_{\mathrm{aw}}\left(25^{\circ} \mathrm{C}\right)=61400 \mathrm{~J} / \mathrm{mol}$
- $\mathrm{R}=8.314 \mathrm{~Pa} \mathrm{~m}^{3} /(\mathrm{mol} \mathrm{K})$

1,2,3,4,5,6-hexachlorocyclohexane
Compare $[\mathrm{L}]_{\mathrm{w}}$ in Lake Champlain $\left(25^{\circ} \mathrm{C}\right)$ near a farm that uses it on its crops with...
$[\mathrm{L}]_{w}$ in the $\operatorname{Arctic}\left(1^{\circ} \mathrm{C}\right)$
given that the $[\mathrm{L}]_{\mathrm{a}}$ is 100 and $10 \mathrm{pg} / \mathrm{m}^{3}$ in each location, respectively.

Grasshopper effect: spatial \& temporal

Warmer areas
Net evaporation
higher K_{H}
(source)

Elevational, latitudinal
Daily, seasonal
Coastal/continental
http://www.ainc-inac.gc.ca/ai/scr/nt/images/nt/pop-pop-1-eng.jpg

Global Distillation

- More volatile compounds are transported faster (atmosphere moves faster than ocean)

Journal of Exposure Science and Environmental Epidemiology (2006) 16, 207-224. doi:10.1038/sj.jes. 7500456

