Lindane Solubility

- The chemical formula for lindane is $C_6H_6Cl_6$, and it has a molecular weight of 290.83
- ullet Lindane is a white crystalline solid that is volatile in air and insoluble in water ullet ($oxedsymbol{1}$)
- Lindane vanor is colorless and has a clight musty odor, the ogor threehold is 19 has
- EPA considers lindane to be a possible human carcinogen (cancer-causing agent) and has ranked it in EPA's Group B2/C. (6)
- EPA has established an oral cancer slope factor of 1.3 (mg/kg/d)⁻¹. (6)
- CalEPA has calculated an inhalation unit risk factor of 3.1 x 10⁻⁴ (μg/m³)⁻¹. (8)

Physical Properties

- Lindane is the common name for gamma-hexachlorocyclohexane. (1,5)
- ullet The chemical formula for indane is CERECIE, and it has a molecular weight of 290.63 g/mol. $(\underline{1})$
- Lindane is a white crystalline solid that is volatile in air and insoluble in water. (1)
 Lindane vapor is colorless and has a slight musty odor, the odor threshold is 12 parts per million (ppm), (1)
- The vapor pressure for lindane is 9.4×10^{-6} mm Hg at 20 °C, and it has a log octanol/water partition coefficient (log K_{ow}) of 3.3. (1)

Conversion Factors:

To convert concentrations in air (at 25 °C) from ppm to mg/m^3 : $mg/m^3 = (ppm) \times (molecular weight of the compound)/(24.45)$. For lindane: 1 ppm = 11.89 mg/m^3 . To convert concentrations in air from $\mu g/m^3$ to mg/m^3 : $mg/m^3 = (\mu g/m^3) \times (1 mg/1,000 \mu g)$.

Health Data from Inhalation Exposure

Lindane

Lindane Solubility

Lindane solubility = 7.3 mg/L

Lindane MCL = 0.0002 mg/L

36,500-fold

difference!!

Huge range aq. Solubilities!

Figure 5.1 Ranges in water solubilities (C_w^{sal}) of some important classes of organic compounds.

Mole fraction of organic liquids that are saturated with water: $x^{o}_{i,L}$

TABLE 5.1	Mole Fraction of Some	Common Nonpolar	Organic Liquids
Saturated with Water		•	•

Organic Liquid	x_{o}	Reference	
Pentane	0.99952		
Hexane	0.99946		
Heptane	0.99916	Gerrard, 1980	
Octane	0.99911	•	
Benzene	0.9977		
Chlorobenzene	0.9975		
1,2,-Dichlorobenzene	0.9973		
1,2,4-Trichlorobenzene	0.9980		
Trichloroethylene	0.9977	Horvath, 1982	
Tetrachloroethylene	0.99913		
Methylene chloride	0.9914		
Chloroform	0.9946		
1,1,1-Trichloroethane	0.9974		
Diethyl ether	0.942		
Butyl acetate	0.89		
Methyl acetate	0.74	Riddick and Bunger, 1970	
2-Butanone	0.69		
3-Pentanone	0.89	12	
Pentanol	0.64	Stephenson et al., 1984	
Octanol	0.79	-	

Aqueous Activity Coefficients

Compound	${\gamma}_{i{ m w}}^{\infty}$	$G_{i\mathrm{w}}^{\mathrm{E},\inftyb}$ (kJ·mol ⁻¹)
Methanol	1.6	1.2
Ethanol	3.7	3.2
Acetone	7.0	4.8
1-Butanol	5.0×10^{1}	9.7
Phenol	5.7×10^{1}	10.0
Aniline	1.3×10^{2}	12.1
3-Methylphenol	2.3×10^{1}	13.5
1-Hexanol	8.0×10^{2}	16.5
Trichloromethane	8.2×10^{2}	16.6
Benzene	2.5×10^{3}	19.4
Chlorobenzene	1.3×10^{4}	23.5
Tetrachloroethene	5.0×10^{4}	26.8
Naphthalene	6.9×10^{4}	27.6
1,2-Dichlorobenzene	6.8×10^{4}	27.6
1,3,5-Trimethylbenzene	1.2×10^{5}	29.0
Phenanthrene	1.7×10^{6}	35.5
Anthracene	2.7×10^{6}	36.7
Hexachlorobenzene	3.5×10^{7}	43.0
2,4,4'-Trichlorobiphenyl	4.7×10^7	43.8
2,2',5,5'-Tetrachlorobiphenyl	7.5×10^7	44.9
Benzo(a)pyrene	2.7×10^{8}	48.1

Thermodynamics of Dissolution

Reactions occur because they are energetically favorable → they proceed from HIGH to LOW energy

if $\Delta G_{sol} < 0$, the rxn is spontaneous

LOW energy

When water is "saturated" system is at EQ $\Delta G = 0$

Thermodynamics of Dissolving Benzene

Huge range in solubility & activity coefficient

Figure 5.1 Ranges in water solubilities (C_w^{sat}) of some important classes of organic compounds.

Molecular View & Enthalpy

 $o:o + w:w \rightarrow w:o:w$

Ideal Mixing

$$\Delta H_1 + \Delta H_2 = -\Delta H_3$$
So...
$$\sum \Delta H_{1,2,3} = \Delta H^{E}_{diss} = 0$$

Nonideal "excess"

$$\sum \Delta H^{E}_{1,2,3,4} = \Delta H^{E}_{diss} = > \mathbf{0}$$
$$|\Delta H_1 + \Delta H_2| > |\Delta H_3 + \Delta H_4|$$

 $\Delta H^{E}_{diss} > 0$ (nonpolars) net loss of Hbonds in exchange for weaker intermolecular forces

Figure 5.2 Schematic representation of the various enthalpies involved when dissolving a

Forming a cavity requires "breaking" water's Hbonds

Molecular View & Enthalpy

 $o:o + w:w \rightarrow w:o:w$

Ideal Mixing

$$\Delta H_1 + \Delta H_2 = -\Delta H_3$$
So...
$$\sum \Delta H_{1,2,3} = \Delta H_{\text{diss}}^{\text{E}} = 0$$

Nonideal "excess"

$$\sum \Delta H^{E}_{1,2,3,4} = \Delta H^{E}_{diss} = > \mathbf{0}$$
$$|\Delta H_1 + \Delta H_2| > |\Delta H_3 + \Delta H_4|$$

 $\Delta H^{E}_{diss} > 0$ (nonpolars) net loss of Hbonds in exchange for weaker intermolecular forces

Figure 5.2 Schematic representation of the various enthalpies involved when dissolving a

Positive Excess AH limits solubility

Due to <u>net loss</u> of water's Hbonds in exchange for weaker forces of attraction

Magnitude is

- •Related to solute (& hence, cavity) size
- •Solute Polarity/polarizability

Molecular View & Entropy

 $o:o + w:w \rightarrow w:o:w$

ΔS_{mixing}>0
Mixing increases chaos!
Chaos is good for spontaneity!!

Non-Ideal "excess" $\sum \Delta S^{E}_{1,2,3,4} < 0$

Solute trapping in "ice" cavity limits solubility!

Figure 5.2 Schematic representation of the various enthalpies involved when dissolving a

Negative Excess **\(\Delta S \)**limits solubility

C#-alcohol (OH)	-TΔS ^E (kJ/mol)
C1-OH	8.7
С2-ОН	13.1
С3-ОН	15.1
C4-OH	19.3
С6-ОН	20.3
C8-OH	22.6
C12-OH	27.3

Due to <u>net loss</u> of solute's disorder/chaos/freedom

Magnitude is related to solute's "initial" freedom in its own pure phase

.... not size alone

Negative Excess Entropy limits solubility

Due to <u>net loss</u> of solute's disorder/chaos/freedom

Magnitude is related to

•solute's "initial" freedom in its own pure phase

•Shape/flexibility (rings have less freedom; longer chains have more freedom

Qualitative Solubility

```
\begin{array}{c|c} \textbf{Highly polar groups} & \bigcirc \\ \textbf{-COO- (ester)} & \bigcirc \\ \textbf{-O- (ether)} & \\ R' & R' \end{array}
```

Polar groups

- -OH (alcohol, "phenol" if its attached to benzene)
- -COOH (carboxylic acid)
- -NH₂ (amine)

Weakly polar: C-Cl, C-Br, C-H

γ Estimations vs Experiment

Activity coefficient estimation

$$\ln \gamma_{iw}^{sat} = -\ln p_{iL}^{\circ}(bar) - 0.572 \left[(V_i)^{\frac{2}{3}} \left(\frac{n_{Di}^2 - 1}{n_{Di}^2 + 2} \right) \right] - 5.78\pi_i - 8.77(\alpha_i) - 11.1(\beta_i) + 0.0472V_i + 9.49$$

v.p. & LDF

 p_{iL} = given or estimated n_D = refractive index (polarizability, Table 3.1)

Dipolarity & polarizability

 π = "pi term" (Table 5.5)

HDA interactions

H-donor (α) & Hacceptor (β) terms (Table 4.3) Volume term estimated

Solubility and Activity Coefficient Eqns.

$$C_{iw,L}^{sat}(mol/L) = \frac{1}{\overline{V}_{w}\gamma_{iw}^{sat}}$$

for liquids (& subcooled liquids)

$$C_{iw,S}^{sat}(mol/L) = \frac{1}{\overline{V}_w \gamma_{iw}^{sat}} e^{-\Delta_{fus} G_i/RT}$$
 for solids, where

$$\Delta_{\text{fus}}G_{i}(J/mol) = [56.5 + 9.2\tau - 19.2\log(\sigma)](T_{m} - T)$$

These equations tell us that all we need in order to estimate C_w sat is an estimate/knowledge of

$$\gamma_{iw}^{sat}$$
, τ , σ , and T_{m}

T-Solubility relationships

Figure 5.6 Solubility in water as a function of temperature for various compounds.

"Salting out"

Figure 5.7 Effect of salt concentrations on the aqueous solubility of benzene (McDevit and Long, 1952) and naphthalene (Gordon and Thorne, 1967a).