Lindane Solubility - The chemical formula for lindane is $C_6H_6Cl_6$, and it has a molecular weight of 290.83 - ullet Lindane is a white crystalline solid that is volatile in air and insoluble in water ullet ($oxedsymbol{1}$) - Lindane vanor is colorless and has a clight musty odor, the ogor threehold is 19 has - EPA considers lindane to be a possible human carcinogen (cancer-causing agent) and has ranked it in EPA's Group B2/C. (6) - EPA has established an oral cancer slope factor of 1.3 (mg/kg/d)⁻¹. (6) - CalEPA has calculated an inhalation unit risk factor of 3.1 x 10⁻⁴ (μg/m³)⁻¹. (8) #### **Physical Properties** - Lindane is the common name for gamma-hexachlorocyclohexane. (1,5) - ullet The chemical formula for indane is CERECIE, and it has a molecular weight of 290.63 g/mol. $(\underline{1})$ - Lindane is a white crystalline solid that is volatile in air and insoluble in water. (1) Lindane vapor is colorless and has a slight musty odor, the odor threshold is 12 parts per million (ppm), (1) - The vapor pressure for lindane is 9.4×10^{-6} mm Hg at 20 °C, and it has a log octanol/water partition coefficient (log K_{ow}) of 3.3. (1) #### **Conversion Factors:** To convert concentrations in air (at 25 °C) from ppm to mg/m^3 : $mg/m^3 = (ppm) \times (molecular weight of the compound)/(24.45)$. For lindane: 1 ppm = 11.89 mg/m^3 . To convert concentrations in air from $\mu g/m^3$ to mg/m^3 : $mg/m^3 = (\mu g/m^3) \times (1 mg/1,000 \mu g)$. #### Health Data from Inhalation Exposure #### Lindane ## Lindane Solubility Lindane solubility = 7.3 mg/L Lindane MCL = 0.0002 mg/L 36,500-fold difference!! ## Huge range aq. Solubilities! **Figure 5.1** Ranges in water solubilities (C_w^{sal}) of some important classes of organic compounds. # Mole fraction of organic liquids that are saturated with water: $x^{o}_{i,L}$ | TABLE 5.1 | Mole Fraction of Some | Common Nonpolar | Organic Liquids | |----------------------|-----------------------|-----------------|-----------------| | Saturated with Water | | • | • | | Organic Liquid | x_{o} | Reference | | |------------------------|---------|--------------------------|--| | Pentane | 0.99952 | | | | Hexane | 0.99946 | | | | Heptane | 0.99916 | Gerrard, 1980 | | | Octane | 0.99911 | • | | | Benzene | 0.9977 | | | | Chlorobenzene | 0.9975 | | | | 1,2,-Dichlorobenzene | 0.9973 | | | | 1,2,4-Trichlorobenzene | 0.9980 | | | | Trichloroethylene | 0.9977 | Horvath, 1982 | | | Tetrachloroethylene | 0.99913 | | | | Methylene chloride | 0.9914 | | | | Chloroform | 0.9946 | | | | 1,1,1-Trichloroethane | 0.9974 | | | | Diethyl ether | 0.942 | | | | Butyl acetate | 0.89 | | | | Methyl acetate | 0.74 | Riddick and Bunger, 1970 | | | 2-Butanone | 0.69 | | | | 3-Pentanone | 0.89 | 12 | | | Pentanol | 0.64 | Stephenson et al., 1984 | | | Octanol | 0.79 | - | | ## Aqueous Activity Coefficients | Compound | ${\gamma}_{i{ m w}}^{\infty}$ | $G_{i\mathrm{w}}^{\mathrm{E},\inftyb}$ (kJ·mol ⁻¹) | |-------------------------------|-------------------------------|--| | Methanol | 1.6 | 1.2 | | Ethanol | 3.7 | 3.2 | | Acetone | 7.0 | 4.8 | | 1-Butanol | 5.0×10^{1} | 9.7 | | Phenol | 5.7×10^{1} | 10.0 | | Aniline | 1.3×10^{2} | 12.1 | | 3-Methylphenol | 2.3×10^{1} | 13.5 | | 1-Hexanol | 8.0×10^{2} | 16.5 | | Trichloromethane | 8.2×10^{2} | 16.6 | | Benzene | 2.5×10^{3} | 19.4 | | Chlorobenzene | 1.3×10^{4} | 23.5 | | Tetrachloroethene | 5.0×10^{4} | 26.8 | | Naphthalene | 6.9×10^{4} | 27.6 | | 1,2-Dichlorobenzene | 6.8×10^{4} | 27.6 | | 1,3,5-Trimethylbenzene | 1.2×10^{5} | 29.0 | | Phenanthrene | 1.7×10^{6} | 35.5 | | Anthracene | 2.7×10^{6} | 36.7 | | Hexachlorobenzene | 3.5×10^{7} | 43.0 | | 2,4,4'-Trichlorobiphenyl | 4.7×10^7 | 43.8 | | 2,2',5,5'-Tetrachlorobiphenyl | 7.5×10^7 | 44.9 | | Benzo(a)pyrene | 2.7×10^{8} | 48.1 | ## Thermodynamics of Dissolution Reactions occur because they are energetically favorable → they proceed from HIGH to LOW energy if $\Delta G_{sol} < 0$, the rxn is spontaneous LOW energy When water is "saturated" system is at EQ $\Delta G = 0$ ## Thermodynamics of Dissolving Benzene # Huge range in solubility & activity coefficient Figure 5.1 Ranges in water solubilities (C_w^{sat}) of some important classes of organic compounds. ## Molecular View & Enthalpy $o:o + w:w \rightarrow w:o:w$ ### **Ideal Mixing** $$\Delta H_1 + \Delta H_2 = -\Delta H_3$$ So... $$\sum \Delta H_{1,2,3} = \Delta H^{E}_{diss} = 0$$ Nonideal "excess" $$\sum \Delta H^{E}_{1,2,3,4} = \Delta H^{E}_{diss} = > \mathbf{0}$$ $$|\Delta H_1 + \Delta H_2| > |\Delta H_3 + \Delta H_4|$$ $\Delta H^{E}_{diss} > 0$ (nonpolars) net loss of Hbonds in exchange for weaker intermolecular forces Figure 5.2 Schematic representation of the various enthalpies involved when dissolving a # Forming a cavity requires "breaking" water's Hbonds ## Molecular View & Enthalpy $o:o + w:w \rightarrow w:o:w$ ### **Ideal Mixing** $$\Delta H_1 + \Delta H_2 = -\Delta H_3$$ So... $$\sum \Delta H_{1,2,3} = \Delta H_{\text{diss}}^{\text{E}} = 0$$ Nonideal "excess" $$\sum \Delta H^{E}_{1,2,3,4} = \Delta H^{E}_{diss} = > \mathbf{0}$$ $$|\Delta H_1 + \Delta H_2| > |\Delta H_3 + \Delta H_4|$$ $\Delta H^{E}_{diss} > 0$ (nonpolars) net loss of Hbonds in exchange for weaker intermolecular forces Figure 5.2 Schematic representation of the various enthalpies involved when dissolving a # Positive Excess AH limits solubility Due to <u>net loss</u> of water's Hbonds in exchange for weaker forces of attraction ### Magnitude is - •Related to solute (& hence, cavity) size - •Solute Polarity/polarizability ## Molecular View & Entropy $o:o + w:w \rightarrow w:o:w$ ΔS_{mixing}>0 Mixing increases chaos! Chaos is good for spontaneity!! Non-Ideal "excess" $\sum \Delta S^{E}_{1,2,3,4} < 0$ Solute trapping in "ice" cavity limits solubility! Figure 5.2 Schematic representation of the various enthalpies involved when dissolving a # Negative Excess **\(\Delta S \)**limits solubility | C#-alcohol (OH) | -TΔS ^E (kJ/mol) | |-----------------|----------------------------| | C1-OH | 8.7 | | С2-ОН | 13.1 | | С3-ОН | 15.1 | | C4-OH | 19.3 | | С6-ОН | 20.3 | | C8-OH | 22.6 | | C12-OH | 27.3 | Due to <u>net loss</u> of solute's disorder/chaos/freedom Magnitude is related to solute's "initial" freedom in its own pure phase not size alone # Negative Excess Entropy limits solubility Due to <u>net loss</u> of solute's disorder/chaos/freedom ### Magnitude is related to •solute's "initial" freedom in its own pure phase •Shape/flexibility (rings have less freedom; longer chains have more freedom ### Qualitative Solubility ``` \begin{array}{c|c} \textbf{Highly polar groups} & \bigcirc \\ \textbf{-COO- (ester)} & \bigcirc \\ \textbf{-O- (ether)} & \\ R' & R' \end{array} ``` ### Polar groups - -OH (alcohol, "phenol" if its attached to benzene) - -COOH (carboxylic acid) - -NH₂ (amine) Weakly polar: C-Cl, C-Br, C-H ## γ Estimations vs Experiment ## Activity coefficient estimation $$\ln \gamma_{iw}^{sat} = -\ln p_{iL}^{\circ}(bar) - 0.572 \left[(V_i)^{\frac{2}{3}} \left(\frac{n_{Di}^2 - 1}{n_{Di}^2 + 2} \right) \right] - 5.78\pi_i - 8.77(\alpha_i) - 11.1(\beta_i) + 0.0472V_i + 9.49$$ #### v.p. & LDF p_{iL} = given or estimated n_D = refractive index (polarizability, Table 3.1) ## Dipolarity & polarizability π = "pi term" (Table 5.5) #### **HDA** interactions H-donor (α) & Hacceptor (β) terms (Table 4.3) Volume term estimated ## Solubility and Activity Coefficient Eqns. $$C_{iw,L}^{sat}(mol/L) = \frac{1}{\overline{V}_{w}\gamma_{iw}^{sat}}$$ for liquids (& subcooled liquids) $$C_{iw,S}^{sat}(mol/L) = \frac{1}{\overline{V}_w \gamma_{iw}^{sat}} e^{-\Delta_{fus} G_i/RT}$$ for solids, where $$\Delta_{\text{fus}}G_{i}(J/mol) = [56.5 + 9.2\tau - 19.2\log(\sigma)](T_{m} - T)$$ These equations tell us that all we need in order to estimate C_w sat is an estimate/knowledge of $$\gamma_{iw}^{sat}$$, τ , σ , and T_{m} ## T-Solubility relationships Figure 5.6 Solubility in water as a function of temperature for various compounds. ## "Salting out" Figure 5.7 Effect of salt concentrations on the aqueous solubility of benzene (McDevit and Long, 1952) and naphthalene (Gordon and Thorne, 1967a).