Math 200 Fall 2015
November 2

Definition. Let A be an $m \times n$ matrix. The *transpose* of A, denoted A^T, is the $n \times m$ matrix obtained from A by writing the rows of A, in order, as columns. So for $A = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{bmatrix}$, $A^T = \begin{bmatrix} a_{11} & a_{21} & \ldots & a_{m1} \\ a_{12} & a_{22} & \ldots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \ldots & a_{mn} \end{bmatrix}$.

Example. For $A = \begin{bmatrix} 1 & 6 \\ 3 & -1 \\ 0 & 4 \end{bmatrix}$, $A^T = \begin{bmatrix} 1 & 3 & 0 \\ 6 & -1 & 4 \end{bmatrix}$.

Theorem. If A and B are matrices of the same dimensions, then $(A + B)^T = A^T + B^T$.

The next theorem is included for your use in the homework. To make sense of the proof, you might want to work through an example or two.

Theorem. If A is an m by k matrix, and B is a k by n matrix (so the product AB is defined), then $(AB)^T = B^T A^T$.

Proof: The row i, column j entry of AB is the dot product of row i of A with column j of B (it’s $a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$). This becomes the row j, column i entry of $(AB)^T$. On the other hand, the corresponding row j, column i entry of $B^T A^T$ is the dot product of row j of B^T with column i of A^T, which gives the same result. \square

HOMEWORK DUE WEDNESDAY, NOVEMBER 4:

1. Explain why $(A^T)^T = A$ for any matrix A.

2. **Definition.** A square matrix A is *symmetric* if $A = A^T$.

 a) Give examples of 2×2, 3×3, and 4×4 symmetric matrices.

 b) Prove: If B is any square matrix, then $B + B^T$ is symmetric. (Confirm with a few examples before you prove in general.)

 c) Prove: If C is any square matrix, then CC^T is symmetric.
3. **Definition.** A square matrix \(A \) is *skew-symmetric* if \(A = -A^T \).

a) Give examples of \(2 \times 2 \), \(3 \times 3 \), and \(4 \times 4 \) skew-symmetric matrices.

b) Show that in any skew-symmetric matrix, the entries on the main diagonal \((a_{ii}, i = 1, ..., n)\) are all zeros.

c) Prove: If \(B \) is any square matrix, then \(B - B^T \) is skew-symmetric. (Again, you might want to confirm with a few examples first.)

4. Show that any square matrix \(C \) is the sum of a symmetric matrix and a skew-symmetric matrix.

5. Show that if a square matrix \(A \) is symmetric, then so is \(A^2 = AA \).