Math 200 Spring 2015
February 27

Notice that in \mathbb{R}^2, if \vec{v} is a scalar multiple of \vec{w}, say $\vec{v} = k \vec{w}$, where $k \neq 0$, then we can rearrange the equation and write $(1)\vec{v} + (-k)\vec{w} = \vec{0}$. In words, we can write the zero vector as a linear combination of \vec{v} and \vec{w}, where the coefficients are not zero. It is the second equation we will use as a model to define linear dependence and independence in \mathbb{R}^3.

Definition. The vectors $\vec{v}_1, \vec{v}_2, ... \vec{v}_n \in \mathbb{R}^3$ are **linearly dependent** if there are scalars $a_1, a_2, ... a_n$, not all zero, with $a_1\vec{v}_1 + a_2\vec{v}_2 + ... + a_n\vec{v}_n = \vec{0}$.

In other words, a set of vectors is linearly dependent if there is a nontrivial (meaning scalar coefficients are not all 0) linear combination of them equal to the zero vector.

Example: $\vec{v}_1 = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 2 & 0 & -3 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 2 & -4 & -5 \end{bmatrix}$ are linearly dependent, because $4\vec{v}_1 - 3\vec{v}_2 + \vec{v}_3 = \vec{0}$. (You worked with this example on the last homework.)

Definition. The vectors $\vec{v}_1, \vec{v}_2, ... \vec{v}_n \in \mathbb{R}^3$ are **linearly independent** if the only scalars $a_1, a_2, ... a_n$ such that $a_1\vec{v}_1 + a_2\vec{v}_2 + ... + a_n\vec{v}_n = \vec{0}$ are $a_1 = 0, a_2 = 0, ...$, and $a_n = 0$.

Example. The vectors $\vec{e}_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, $\vec{e}_2 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, and $\vec{e}_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ are linearly independent. To see this, note that the only way to have $a_1\vec{e}_1 + a_2\vec{e}_2 + a_3\vec{e}_3 = \vec{0}$ is with $\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$; that is, $a_1 = a_2 = a_3 = 0$.

Definition. A **basis** for \mathbb{R}^3 is a set \mathcal{B} of vectors that both span \mathbb{R}^3 and are linearly independent.

Example. The set $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ is the **standard basis** for \mathbb{R}^3.

HOMEWORK DUE MONDAY, MARCH 2:

1. Show that the vectors $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ are linearly independent. That is, show that the only solution to $a\vec{u} + b\vec{v} + c\vec{w} = \vec{0}$ is the (trivial) solution $a = 0, b = 0, c = 0$.

 NOTE: In the homework due March 5, you showed that these vectors span \mathbb{R}^3. Thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is a basis for \mathbb{R}^3.
2. For each of the following sets of vectors $\mathbf{B} = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$, determine whether or not \mathbf{B} is a basis for \mathbb{R}^3. To do this, consider the vector equation $a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 = \mathbf{w}$, where, say, $\mathbf{w} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$. This equation corresponds to a system of 3 equations in the variables a_1, a_2, a_3. (i) Does the system have a solution for all possible values of $p, q,$ and r? If so, then \mathbf{B} spans \mathbb{R}^3. (ii) For the special case of $\mathbf{w} = \mathbf{0}$, is the only solution the one with $a_1 = 0, a_2 = 0,$ and $a_3 = 0$? If so, then \mathbf{B} is a linearly independent set. If \mathbf{B} both spans \mathbb{R}^3 and is linearly independent, then it forms a basis for \mathbb{R}^3.

a) $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 4 \\ 4 \\ -2 \end{bmatrix}$

b) $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix}$

c) $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$

3. Recall that the set of solutions to $x + 2y + 3z = 0$ forms a plane through the origin in \mathbb{R}^3.

a) Show that the vector $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ lies on this plane.

b) Show that the vector $\mathbf{w} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$ also lies on this plane.

c) Let j and k be two scalars. Show that the vector $\mathbf{u} = j\mathbf{v} + k\mathbf{w}$ also lies in the plane.

4. GIVEN: If the dot product of two vectors in \mathbb{R}^3 equals zero, then the vectors are perpendicular.

a) Find a vector \mathbf{v} that is perpendicular to $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

b) Find a vector \mathbf{w} that is perpendicular to both \mathbf{u} and \mathbf{v}.

5. Find a vector that is perpendicular to all vectors lying in the plane $x + 2y + 3z = 0$.