What is Numerical Linear Algebra?

Definition

the creation, study, and implementation of algorithms to solve problems from linear algebra

- creation - understand and address challenges, propose a simplification or modification
- study - discover error estimates, predict performance
- implementation - code, run, examine, adapt
What is Numerical Linear Algebra?

Definition

the creation, study, and implementation of algorithms to solve problems from linear algebra

- **solve** - find approximate ("good enough") or exact solutions
- **problems** - linear systems ($A\vec{x} = \vec{b}$), eigenvalue problems, ill-posed problems
Problem

Determine the amount of traffic between each of the four intersections.
Mass Balance

\[(\text{rate in}) - (\text{rate out}) = 0\]

\[
\begin{align*}
(w + x) - (100 + 200) &= 0, \\
(150 + 100) - (x + y) &= 0, \\
(y + z) - (125 + 75) &= 0, \\
(100 + 150) - (w + z) &= 0
\end{align*}
\]

\[
\begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
300 \\
250 \\
200 \\
250
\end{bmatrix}
\]
This system has infinitely many solutions! To uniquely determine traffic flow, one must include an additional observation point.

Given \(A\vec{x} = \vec{b} \)
- There is a unique solution.
- There are infinitely many solutions.
- There are no solutions.
Well-posed and Ill-posed Problems

Well-posed
a unique solution exists

For a linear system:

\[A\vec{x} = \vec{b} \]

if \(A \) is a square nonsingular matrix (\(A^{-1} \) exists), then \(A\vec{x} = \vec{b} \) is a well-posed problem.

Ill-posed
- there is more than one solution (possibly infinitely many)
- there is no solution
- the solution is unstable (small changes in data produce large changes in the solution)
Today’s Linear Problems

- often VERY large – not solvable by hand!
- involve messy real data – making accurate calculations difficult
- usually part of a larger problem
- no such thing as a ‘one-size-fits-all’ solution method

The need for Numerical Linear Algebra

We need **practical methods** to find “good enough” solutions for today’s problems!
Given a 100×100 matrix, A, of random numbers and a 100×1 vector, b, of random numbers, solve $Ax = b$.

- $\text{inv}(A)$-computes the inverse of A, then performs $x = A^{-1}b$
- $A\backslash b$- solves $Ax = b$ without computing inverse
- GE-row reduce $[A|b]$ and backsolve

<table>
<thead>
<tr>
<th></th>
<th>inv(A)</th>
<th>$A\backslash b$</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>0.015866</td>
<td>0.00088432</td>
<td>0.017442</td>
</tr>
<tr>
<td>error</td>
<td>$1.9991e-13$</td>
<td>$1.5739e-13$</td>
<td>$1.7252e-13$</td>
</tr>
</tbody>
</table>

Not all methods are equivalent!!!
Given a 1000×1000 matrix, A, of random numbers and a 1000×1 vector, b, of random numbers, solve $Ax = b$.

<table>
<thead>
<tr>
<th></th>
<th>$\text{inv}(A)$</th>
<th>$A \backslash b$</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>0.035627</td>
<td>0.017455</td>
<td>1.7936</td>
</tr>
<tr>
<td>$10 \times \text{size}$</td>
<td>$2.25 \times \text{longer}$</td>
<td>$380 \times \text{longer}$</td>
<td>$1950 \times \text{longer}$</td>
</tr>
<tr>
<td>error</td>
<td>$4.0745e-11$</td>
<td>$8.122e-12$</td>
<td>$1.5859e-11$</td>
</tr>
</tbody>
</table>

Comp. cost increase (time/storage) > dim. increase
Given a $10,000 \times 10,000$ matrix, A, of random numbers and a $10,000 \times 1$ vector, b, of random numbers, solve $Ax = b$.

<table>
<thead>
<tr>
<th></th>
<th>inv(A)</th>
<th>A\ b</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>13.512</td>
<td>5.4065</td>
<td>3509.6</td>
</tr>
<tr>
<td>10×size</td>
<td>319×longer</td>
<td>310×longer</td>
<td>1960×longer</td>
</tr>
<tr>
<td>error</td>
<td>1.5813e−09</td>
<td>3.8528e−10</td>
<td>3.7676e−10</td>
</tr>
</tbody>
</table>

Time is money!!! Efficiency matters!!!
MATH0328 Learning Goals

Our goals are to

- study the motivation, creation, implementation, and analysis of numerical methods in linear algebra
- develop mathematical tools/skills for matrix analysis
- understand the challenges and role of numerical computing in mathematics today
<table>
<thead>
<tr>
<th>Prerequisites</th>
<th>MATH0200 (Linear Algebra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Numerical Linear Algebra by Layton and Sussman</td>
</tr>
<tr>
<td></td>
<td>ISBN: 978-1-312-32985-0</td>
</tr>
<tr>
<td></td>
<td>pdf: http://www.lulu.com/spotlight/Layton_Sussman</td>
</tr>
<tr>
<td>Resources</td>
<td>Wordpress Site:</td>
</tr>
<tr>
<td></td>
<td>http://sites.middlebury.edu/math0328/</td>
</tr>
<tr>
<td>Software</td>
<td>We will use MATLAB.</td>
</tr>
<tr>
<td></td>
<td>No prior experience programming is necessary.</td>
</tr>
<tr>
<td></td>
<td>We will learn some basic coding.</td>
</tr>
<tr>
<td></td>
<td>Advanced coding is entirely optional.</td>
</tr>
<tr>
<td>Readings</td>
<td>Readings outlined in weekly announcements on site.</td>
</tr>
<tr>
<td></td>
<td>Students expected to read prior to class.</td>
</tr>
</tbody>
</table>
Grades
40% weekly homework
40% Exams (2 written exams during semester)
20% Project (weeks 6-end of semester)

Homework
- weekly homework assignments
- mix of hand calculations, proofs, and MATLAB
- working together is encouraged
- writing alone is required
- not meant to be completed in one sitting!

Exams
- 2 in-semineter exams
- take-home, open note
- no working together

Project
- completed in pairs
- choose your own topic
- begin (approximately) week 6
- formal paper and presentation during finals
Expectations

- **Be here:** Attend all lectures, arriving on time, and staying for the duration of the class period.

- **Be prepared:** Complete assigned readings and homework problems prior to attending class. Do not stress about understanding every detail you read, but focus on getting a general picture of the topics, and understanding some of the examples.

- **Be present:** Plan to participate by both asking and answering questions, as well as by taking part in discussions and group activities.

- **Be proactive** in your understanding. Start assignments early. Ask questions as they come to you. Attend office hours for clarification the moment you run into trouble.

- **Be respectful** of yourself, your classmates, your professor, and our classroom. We are all responsible for ensuring a successful semester as a productive, welcoming, inclusive, and stimulating class environment.