Michael Durst, Assistant Professor of Physics

Michael Durst

Topic: Biomedical Optics: Laser-Based Imaging.

Biography:

Research

My biomedical optics research involves looking deep within the body without making an incision. This is similar to ultrasound imaging, except I am interested in using light instead of sound. Light provides superior resolution, allowing you to see details on the cellular level. How can you see through the body? If you have ever looked at a flashlight pressed under your hand, you have witnessed light traveling through thick tissue. Biomedical imaging entails using lasers, nonlinear optics, and other clever tools to extract images from beneath the surface of biological tissue. With applications in cancer research, nanoparticle characterization, fiber optic endoscopes, and in vivo imaging, these efforts together will provide access to a wide array of unlabeled biological structures. By combining concepts in condensed matter physics, electromagnetism, quantum mechanics, optics, and biology, this area of research is ideal for undergraduate learning and an enrichment of their understanding of physics.

Background

Previously, I served as a visiting assistant professor of physics at Bates College. Before that, I was a postdoctoral fellow in the Department of Biomedical Engineering at Boston University. I did my graduate research in nonlinear biomedical optics at the School of Applied and Engineering Physics at Cornell University (Ph.D. in applied physics, 2009). My passion for optics began as an undergraduate at Georgetown University (B.S. in physics, 2003), and I look forward to sharing my enthusiasm with the students at Middlebury College starting in the Fall of 2014.