Atom/Fragment approach

$$\log K_{i,ow} \,(25 \,^\circ C) = \sum_k n_k f_k$$

2,3,7,8-tetrachlorodibenzo-p-dioxin
Fragments based on a related substance

Based on DDT

\[
\text{log } K_{ow}(25^\circ C) = 6.20
\]

First establish your intuition...do you expect methoxychlor’s \(K_{ow} \) to be greater or less than DDTs?
Environmental Partitioning

- air
- chemical
- water
- Organic phase (soil, fatty tissues, leaves)

Symbols:
- P^*
- K_h
- K_{oa}
- K_{ow}
- C_w^{sat}

Chemical partitioning between air, water, and organic phases.
FIGURE 3. Primary environmental compartments for hypothetical chemicals defined by their partitioning properties log K_{AW}, log K_{OA}, and log K_{OW}. The distribution between media was calculated with the Globo-POP model assuming 10 years of steady emissions of perfectly persistent chemicals into air, water, and soil (1/3 each) using a zonal emission distribution matching that of the human population. Chemicals with a log K_{OW} > 10 are unlikely to exist. The white circles locate the five chemicals used in the sensitivity analysis within that chemical space. Closed curves indicate the partitioning properties of the chlorobenzenes (CBzs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and dibenzofurans (PCDFs).