Analyzing long-enduring, self-organized, and self-governed CPRs

A direct attack on several of the key questions posed in this book can be launched by an examination of field settings in which (1) appropriators have devised, applied, and monitored their own rules to control the use of their CPRs and (2) the resource systems, as well as the institutions, have survived for long periods of time. The youngest set of institutions to be analyzed in this chapter is already more than 100 years old. The history of the oldest system to be examined exceeds 1,000 years. The institutions discussed in this chapter have survived droughts, floods, wars, pestilence, and major economic and political changes. We shall examine the organization of mountain grazing and forest CPRs in Switzerland and Japan and irrigation systems in Spain and the Philippine Islands.

By indicating that these CPR institutions have survived for long periods of time, I do not mean that their operational rules have remained fixed since they were first introduced. All of the environmental settings included in this chapter are complex and have varied over time. In such settings, it would be almost impossible to "get the operational rules right" on the first try, or even after several tries. These institutions are "robust" or in "institutional equilibrium" in the sense defined by Shepsle. Shepsle (1989b, p. 143) regards "an institution as 'essentially' in equilibrium if changes transpired according to an ex ante plan (and hence part of the original institution) for institutional change." In these cases, the appropriators designed basic operational rules, created organizations to undertake the operational management of their CPRs, and modified their rules over time in light of past experience according to their own collective-choice and constitutional-choice rules.

The cases in this chapter are particularly useful for gaining insight re-

garding how groups of self-organized principals solve two of the major puzzles discussed in Chapter 2: the problem of commitment and the problem of mutual monitoring. (The problem of supply of institutions is addressed in Chapter 4.) The continuing commitments of the appropriators to their institutions have been substantial in these cases. Restrictive rules have been established by the appropriators to constrain appropriation activities and mandate provisioning activities. Thousands of opportunities have arisen in which large benefits could have been reaped by breaking the rules, while the expected sanctions were comparatively low. Stealing water during a dry season in the Spanish huertas might on occasion save an entire season's crop from certain destruction. Avoiding spending day after day maintaining the Philippine irrigation systems might enable a farmer to earn needed income in other pursuits. Harvesting illegal timber in the Swiss or Japanese mountain commons would yield a valuable product. Given the temptations involved, the high levels of conformance to the rules in all these cases have been remarkable.

Sizable resources are invested in monitoring activities in these cases, but the "guards" are rarely "external" agents. Widely diverse monitoring arrangements are used. In all of them, the appropriators themselves play a major role in monitoring each other's activities. Even though mutual monitoring has aspects of being a second-order dilemma, the appropriators in these settings somehow solve this problem. Further, the fines assessed in these settings are surprisingly low. Rarely are they more than a small fraction of the monetary value that could be obtained by breaking the rules. In the conclusion to this chapter, I argue that commitment and monitoring are strategically linked and that monitoring produces private benefits for the monitor as well as joint benefits for others.

In explaining the robustness of these institutions and the resource systems themselves over time in environments characterized by high levels of uncertainty, one needs to search for the appropriate specificity of underlying commonalities that may explain this level of sustainability. Given the differences in environments and historical developments, one would hardly expect the particular rules used in these settings to be the same. And they are not. Given the length of time that they have had for trial-and-error learning about operational rules, the harshness of these environments as a stimulus toward improvement, and the low transformation costs in changing their own operational rules, one can, however, expect that these appropriators have "discovered" some underlying principles of good institutional design in a CPR environment. I do not claim that the institutions devised in these settings are in any sense "optimal." In fact, given the high

levels of uncertainty involved and the difficulty of measuring benefits and costs, it would be extremely difficult to obtain a meaningful measure of optimality.¹

On the other hand, I do not hesitate to call these CPR institutions successful. In all instances the individuals involved have had considerable autonomy to craft their own institutions. Given the salience of these CPRs to the appropriators using them, and their capacity to alter rules in light of past performance, these appropriators have had the incentives and the means to improve these institutions over time. The Swiss and Japanese mountain commons have been sustained, if not enhanced, over the centuries while being used intensively. Ecological sustainability in a fragile world of avalanches, unpredictable precipitation, and economic growth is quite an accomplishment for any group of appropriators working over many centuries. Keeping order and maintaining large-scale irrigation works in the difficult terrain of Spain or the Philippine Islands have been similarly remarkable achievements. That record has not been matched by most of the irrigation systems constructed around the world during the past 25 years. Consequently, I have attempted to identify a set of underlying design principles shared by successful CPR institutions and to determine how those design principles affect the incentives of appropriators so that the CPRs themselves and the CPR institutions can be sustained over time. When in Chapter 5 we discuss cases in which appropriators were not able to devise or sustain institutional arrangements to solve CPR problems, we shall consider to what extent the design principles used by appropriators in the "success" cases also characterize the "failure" cases.

The cases discussed in this chapter also help us to examine two other questions. First, the CPR institutions related to the use of precarious and delicately balanced mountain commons to provide fodder and forest products in Switzerland and Japan, in particular, help us to confront the question of the presumed superiority of private-property institutions for most allocational purposes, and specifically those related to the uses of land. Although many resource economists admit that technical difficulties prevent the creation of private property rights to fugitive resources, such as groundwater, oil, and fish, almost all share the presumption that the creation of private property rights to arable or grazing land is an obvious solution to the problem of degradation. Dasgupta and Heal (1979, p. 77), for example, assert that when private property rights are introduced in areas of arable or grazing land, "the resource ceases to be common property and the problem is solved at one stroke."

Many property-rights theorists presume that one of two undesirable outcomes is likely under communal ownership: (1) the commons will be

Analyzing long-enduring CPRs

destroyed because no one can be excluded, or (2) the costs of negotiating a set of allocation rules will be excessive, even if exclusion is achieved.2 On the contrary, what one observes in these cases is the ongoing, side-by-side existence of private property and communal property in settings in which the individuals involved have exercised considerable control over institutional arrangements and property rights. Generations of Swiss and Japanese villagers have learned the relative benefits and costs of privateproperty and communal-property institutions related to various types of land and uses of land. The villagers in both settings have chosen to retain the institution of communal property as the foundation for land use and similar important aspects of village economies. The economic survival of these villagers has been dependent on the skill with which they have used their limited resources. One cannot view communal property in these settings as the primordial remains of earlier institutions evolved in a land of plenty. If the transactions costs involved in managing communal property had been excessive, compared with private-property institutions, the villagers would have had many opportunities to devise different landtenure arrangements for the mountain commons.

Second, Thave frequently been asked, when giving seminar presentations about the Swiss, Japanese, and Spanish institutions, if the same design principles are relevant for solving CPR problems in Third World settings. The last case discussed in this chapter – the zanjera institutions of the Philippines – provides a strong affirmative answer to this question. All of the design principles present in the Swiss, Japanese, and Spanish cases are also present in the Philippine case. An analysis of the underlying similarities of enduring CPR institutions, though based on a limited number of cases, may have broader applications.

COMMUNAL TENURE IN HIGH MOUNTAIN MEADOWS AND FORESTS³

Törbel, Switzerland

Our first case concerns Törbel, Switzerland, a village of about 600 people located in the Vispertal trench of the upper Valais canton, as described by Robert McC. Netting in a series of articles (1972, 1976) that were later incorporated into his book *Balancing on an Alp* (1981). Netting (1972, p. 133) identifies the most significant features of the general environment as "(1) the steepness of its slope and the wide range of microclimates demarcated by altitude, (2) the prevailing paucity of precipitation, and (3) the exposure to sunlight." For centuries, Törbel peasants have planted their privately owned plots with bread grains, garden vegetables, fruit trees, and

hay for winter fodder. Cheese produced by a small group of herdsmen, who tend village cattle pastured on the communally owned alpine meadows during the summer months, has been an important part of the local economy.

Written legal documents dating back to 1224 provide information regarding the types of land tenure and transfers that have occurred in the village and the rules used by the villagers to regulate the five types of communally owned property: the alpine grazing meadows, the forests, the "waste" lands, the irrigation systems, and the paths and roads connecting privately and communally owned properties. On February 1, 1483, Törbel residents signed articles formally establishing an association to achieve a better level of regulation over the use of the alp, the forests, and the waste lands.

The law specifically forbade a foreigner (Fremde) who bought or otherwise occupied land in Törbel from acquiring any right in the communal alp, common lands, or grazing places, or permission to fell timber. Ownership of a piece of land did not automatically confer any communal right (genossenschaftliches Recht). The inhabitants currently possessing land and water rights reserved the power to decide whether an outsider should be admitted to community membership.

-(Netting 1976, p. 139)

The boundaries of the communally owned lands were firmly established long ago, as indicated in a 1507 inventory document.

Access to well-defined common property was strictly limited to citizens, who were specifically extended communal rights.⁴ As far as the summer grazing grounds were concerned, regulations written in 1517 stated that "no citizen could send more cows to the alp than he could feed during the winter" (Netting 1976, p. 139). That regulation, which Netting reports to be still enforced, imposed substantial fines for any attempt by villagers to appropriate a larger share of grazing rights. Adherence to this "wintering" Trule was administered by a local official (Gewalthaber) who was authorized to levy fines on those who exceeded their quotas and to keep one-half of the fines for himself. The wintering rule is used by many other Swiss villages as a means for allocating appropriation rights (frequently referred to as "cow rights") to the commons. This and other forms of cow rights are relatively easy to monitor and enforce. The cows are all sent to the mountain to be cared for by the herdsmen. They must be counted immediately, as the number of cows each family sends is the basis for determining the amount of cheese the family will receive at the annual distribution.

The village statutes are voted on by all citizens and provide the general legal authority for an alp association to manage the alp. This association includes all local citizens owning cattle. The association has annual meet-

ings to discuss general rules and policies and elect officials. The officials hire the alp staff, impose fines for misuse of the common property, arrange for distribution of manure on the summer pastures, and organize the annual maintenance work, such as building and maintaining roads and paths to and on the alp and rebuilding avalanche-damaged corrals or huts. Labor contributions or fees related to the use of the meadows usually are set in proportion to the number of cattle sent by each owner. Trees that will provide timber for construction and wood for heating are marked by village officials and assigned by lot to groups of households, whose members then are authorized to enter the forests and harvest the marked trees.

Private rights to land are well developed in Törbel and other Swiss villages. Most of the meadows, gardens, grainfields, and vineyards are owned by various individuals, and complex condominium-type agreements are devised for the fractional shares that siblings and other relatives may own in barns, granaries, and multistory housing units. The inheritance system in Törbel ensures that all legitimate offspring share equally in the division of the private holdings of their parents and consequently in access to the commons, but family property is not divided until surviving siblings are relatively mature (Netting 1972). Prior to a period of population growth in the nineteenth century, and hence severe population pressure on the limited land, the level of resource use was held in check by various population-control measures such as late marriages, high rates of celibacy, long birth spacing, and considerable emigration (Netting 1981).

Netting (1976, p. 140) dismisses the notion that communal ownership is simply an anachronistic holdover from the past by showing that for at least five centuries these Swiss villagers have been intimately familiar with the advantages and disadvantages of both private and communal tenure systems and have carefully matched particular types of land tenure to particular types of land use. He associates five attributes to land-use patterns with the differences between communal and individual land tenure. He argues that communal forms of land tenure are better suited to the problems that appropriators face when (1) the value of production per unit of land is low, (2) the frequency or dependability of use or yield is low, (3) the possibility of improvement or intensification is low, (4) a large territory is needed for effective use, and (5) relatively large groups are required for capital-investment activities. See Runge (1984a, 1986) and Gilles and Jamtgaard (1981) for similar arguments.

Communal tenure "promotes both general access to and optimum production from certain types of resources while enjoining on the entire community the conservation measures necessary to protect these resources from destruction" (Netting 1976, p. 145). Although yields are relatively

low, the land in Törbel has maintained its productivity for many centuries. Overgrazing has been prevented by tight controls. The CPR not only has been protected but also has been enhanced by investments in weeding and manuring the summer grazing areas and by the construction and maintenance of roads.

Netting is clear that Törbel should not be considered the prototype for all Swiss alpine villages. A recent review of the extensive German literature on common-property regimes in Swiss alpine meadows reveals considerable diversity of legal forms for governing alpine meadows (Picht 1987). However, Netting's major findings are consistent with experience in many Swiss locations. Throughout the alpine region of Switzerland, farmers use private property for agricultural pursuits and a form of common property for the summer meadows, forests, and stony waste lands near their private holdings. Four-fifths of the alpine territory is owned by some form of common property: by local villages (Gemeinden), by corporations, or by cooperatives. The remaining alpine territory belongs either to the cantons or to private owners or groups of co-owners (Picht 1987, p. 4). Some villages own several alpine meadows and reallocate grazing rights to the use of a specific meadow every decade or so (Stevenson 1990).

In addition to defining who has access to the CPR, all local regulations specify authority rules to limit appropriation levels (Picht 1987). In most villages, some form of proportional-allocation rule is used. The proportion is based on (1) the number of animals that can be fed over the winter, (2) the amount of meadowland owned by a farmer, (3) the actual amount of hay produced by a farmer, (4) the value of the land owned in the valley, or (5) the number of shares owned in a cooperative. A few villages allow all citizens to send equal numbers of animals to the summer alp (Picht 1987, p. 13). Overuse of alpine meadows is rarely reported. Where overuse has occurred, the combined effects of entry rules and authority rules have not sufficiently limited grazing practices, or else several villages have owned and used a single alp without an overarching set of rules (Picht 1987, pp. 17–18; Rhodes and Thompson 1975; Stevenson 1990).

All of the Swiss institutions used to govern commonly owned alpine meadows have one obvious similarity – the appropriators themselves make all major decisions about the use of the CPR.

The users/owners are the main decision making unit. They have to decide on all matters of importance and seem to have a considerable degree of autonomy. They can set up statutes and revise them, they can set limits for the use of the pastures and change them, they can adapt their organizational structure. . . . It can also be said that the user organizations are nested in a set of larger organizations (village, Kantone, Bund) in which they are perceived as legitimate. (Picht 1987, p. 28)

Analyzing long-enduring CPRs

Thus, residents of Törbel and other Swiss villages who own communal land spend time governing themselves. Many of the rules they use, however, keep their monitoring and other transactions costs relatively low and reduce the potential for conflict. The procedures used in regard to cutting trees for timber - a valuable resource unit that can be obtained from communal forests - illustrate this quite well. The first step is that the village forester marks the trees ready to be harvested. The second step is that the households eligible to receive timber form work teams and equally divide the work of cutting the trees, hauling the logs, and piling the logs into approximately equal stacks. A lottery is then used to assign particular stacks to the eligible households. No harvesting of trees is authorized at any other time of the year. This procedure nicely combines a careful assessment of the condition of the forest with methods for allocating work and the resulting products that are easy to monitor and are considered fair by all participants. Combining work days or days of reckoning (where the summer's cheese is distributed and assessments are made to cover the costs of the summer's work) with festivities is another method for reducing some of the costs associated with communal management. FESTIVALS

In recent times, the value of labor has risen significantly, thus representing an exogenous change for many Swiss villages. Common-property institutions are also changing to reflect differences in relative factor inputs. Villages that rely on unanimity rules for changing their common-property institutions are not adjusting as rapidly as are those villages that rely on less inclusive rules for changing their procedures.

Hirano, Nagaike, and Yamanoka villages in Japan

In Japan, extensive common lands have existed and have been regulated by local village institutions for centuries. In an important study of traditional common lands in Japan, Margaret A. McKean (1986) estimates that about 12 million hectares of forests and uncultivated mountain meadows were held and managed in common by thousands of rural villages during the Tokugawa period (1600–1867) and that about 3 million hectares are so managed today. Although many villages have sold, leased, or divided their common lands in recent times, McKean (1986, p. 534) indicates that she has "not yet turned up an example of a commons that suffered ecological destruction while it was still a commons" (McKean 1982).8

McKean provides both a general overview of the development of property law in Japan and a specific view of the rules, monitoring arrangements, and sanctions used in three Japanese villages – Hirano, Nagaike, and Yamanoka – for regulating the commons. The environmental conditions of

the villages studied by McKean are remarkably similar to those of Törbel. The villages are established on steep mountains where many microclimates can be distinguished. Peasants cultivate their own private lands, raising rice, garden vegetables, and horses. The common lands in Japan produce a wide variety of valuable forest products, including timber, thatch for roofing and weaving, animal fodder of various kinds, and decayed plants for fertilizer, firewood, and charcoal. The land held in communal tenure meets the previously cited five conditions that Netting posits as conducive to communal property rather than private property.

Each village in earlier times was governed by an assembly, usually composed of the heads of all the households that had been assigned decisionmaking authority in the village. The basis for political rights differed from one village to another. Rights were variously based on cultivation rights in land, taxpaying obligations, or ownership rights in land. In some villages, almost all households had political rights and rights to the use of the commons. In others, such rights were more narrowly held (McKean 1986,

p. 551; Troost 1985).

Ownership of the uncultivated lands near a village devolved from the imperial court to the villages through several intermediate stages involving land stewards and locally based warriors. National cadastral surveys were conducted late in the sixteenth century at a time of land reform that assigned "most of the rights that we today consider to be 'ownership' of arable land to peasants who lived on and cultivated that land" (McKean 1986, p. 537). Owners of large estates in the earlier systems had employed agents in the various villages and authorized those agents to regulate access to uncultivated lands. As villages asserted their own rights to these lands, they shared a clear image of which lands were private and which were held in common. They took the view that those lands held in common needed management in order to serve the long-term interests of the peasants dependent on them.

In traditional Japanese villages, the household was the smallest unit of account, but the kumi, composed of several households, was frequently used as an accounting and distributional unit related to the commons. Each village contained a carefully recorded, defined number of households. A household could not subdivide itself into multiple households without permission from the village. Rights of access to the communally held lands were accorded only to a household unit, not to individuals as such. Consequently, households with many members had no advantage, and considerable disadvantages, in their access to the commons. Population growth was extremely low (0.025% for the period 1721-1846), and ownership patterns within villages were stable (McKean 1986, p. 552).

Analyzing long-enduring CPRs

In addition to delimiting the ownership status of all lands, village assemblies created detailed authority rules specifying in various ways how much of each valued product a household could harvest from the commons and under what conditions. The rules used in these villages, like those in the Swiss villages, were tailored to the specific environment, to the particular economic roles that various forest products played in the local economy, and to the need to minimize the costs of monitoring labor inputs, resource-unit outputs, and compliance with the rules. A village headman usually was responsible for determining the date when the harvesting of a given product could begin. For abundant plants, the date would be selected simply to ensure that plants had matured and had propagated themselves. No limit was placed on the amount to be gathered. For scarce products, various harvesting rules were used. The rules for allocating winter fodder for draft animals by one village from a closed reserve are illustrative:

"... each kumi was assigned a zone according to an annual rotation scheme, and each household had to send one, but only one adult. On the appointed day, each representative reported to the appropriate kumi zone in the winter fodder commons and waited for the temple bell as the signal to begin cutting. However, this grass was cut with large sickles, and since it would be dangerous to have people distributed unevenly around their kumi zone swinging sickles in all directions, the individuals in each kumi lined up together at one end of their zone and advanced to the other end, whacking in step with each other like a great agricultural drill team. The grass was left to dry . . . and then two representatives from each household entered the fodder commons to tie the grass up into equal bundles. The haul for each kumi was grouped together and then divided evenly into one cluster per Indusery household. Each household was then assigned its cluster by lottery.

(McKean 1986, pp. 556-7)

Villagers were required to perform collective work to enhance and maintain the yield of the commons, such as annual burning or specific cutting of timber or thatch. Each household had an obligation to contribute a share to such efforts:

There were written rules about the obligation of each household to contribute a share to the collective work to maintain the commons - to conduct the annual burning (which involved cutting nine-foot firebreaks ahead of time, carefully monitoring the blaze, and occasional fire-fighting when the flames jumped the firebreak), to report to harvest on mountain-opening days, or to do a specific cutting of timber or thatch. Accounts were kept about who contributed what to make sure that no household evaded its responsibilities unnoticed. Only illness, family tragedy, or the absence of able-bodied adults whose labor could be spared from routine chores were recognized as excuses for getting out of collective labor. . . . But, if there was no acceptable excuse, punishment was in order.

(McKean 1986, p. 559)

Each of the villages also devised its own monitoring and sanctioning systems. Given that the mountain usually was closed, except for specified periods, anyone caught in the communally owned territories at other times obviously was not following the rules. Most of the villages hired "detectives" who daily patrolled the commons on horseback in groups of two looking for unauthorized users. In some villages, this position was considered "one of the most prestigious and responsible available to a young man" (McKean 1986, p. 561). In other villages, all eligible males rotated into these positions on a regular basis. One village that did not use formal detectives relied on a form of "citizen's arrest," and anyone was authorized to report violations.

The written codes for each village specified a series of escalating penalties for various violations of the rules to protect the commons, depending on the past behavior of the offender. An occasional infraction would be handled by the detective in a quiet and simple manner. "It was considered perfectly appropriate for the detective to demand cash and saké from violators and to use that as their own entertainment cache" (McKean 1986, p. 561). In addition to the fines paid to the detectives, violators were deprived of their contraband harvest, their equipment, and their horses. The village retained the illegal harvest. The rule-breaker had to pay a fine to the village to retrieve equipment and horses. Fines were graduated from very low levels to extremely high levels to reflect the seriousness of the offense and the willingness of the culprit to make adequate and rapid amends. The most serious sanctions that could be and occasionally were imposed involved complete ostracism or ultimately banishment from the village.

Although the level of rule compliance was very high, violations certainly occurred. McKean reports several types of infractions. Impatience with waiting for mountain-opening day was one reason. In the period just before the official opening of the commons for harvesting a particular plant, the detectives expected – and found – a higher level of infractions and were able to keep themselves well supplied with saké.

A second reason for rule violation sometimes was genuine disagreement about the management decisions of a village headman. McKean illustrates this type of infraction in the following way:

One former detective in Hirano, now a respected village elder, described how he had been patrolling a closed commons one day and came upon not one or two intruders but thirty, including some of the heads of leading households. It was not yet mountain-opening day, but they had entered the commons en masse to cut a particular type of pole used to build trellises to support garden vegetables raised on private plots. If they could not cut the poles soon enough, their entire vegetable

Analyzing long-enduring CPRs

crop might be lost, and they believed that the village headman had erred in setting opening day later than these crops required. (McKean 1986, p. 565)

In that instance, fines were imposed, but they involved making a donation to the village school, rather than the usual payment of saké. In her conclusion, McKean stresses that the long-term success of these locally designed rule systems indicates "that it is not necessary for regulation of the commons to be imposed coercively from the outside" (McKean 1986, p. 571).

6.

HUERTA IRRIGATION INSTITUTIONS

10n May 29, 1435, about 50 years before the residents of Törbel signed their formal articles of association, 84 irrigators served by the Benacher and Faitanar canals in Valencia gathered at the monastery of St. Francis to draw up and approve formal regulations. Those regulations specified who had rights to water from these canals, how the water would be shared in good years as well as bad, how responsibilities for maintenance would be shared, what officials they would elect and how, and what fines would be levied against anyone who broke one of their rules. The canals themselves, like many others in the region, had been constructed in even earlier times. Many rules concerning the distribution of irrigation water were already well established in customary practices. Valencia had been recaptured from the Muslims in 1238 – two centuries before that meeting of the Benacher and Faitanar irrigators. Some of the rules carried into medieval and modern practice were developed prior to that reconquest. 10 Thus, for at least 550 years, and probably for close to 1,000 years, farmers have continued to meet with others sharing the same canals for the purpose of specifying and revising the rules that they use, selecting officials, and determining fines and assessments.

Given the limited quantity of rainfall throughout this semiarid region and the extreme variation in rainfall from year to year, its highly developed agriculture would not have been possible without irrigation works bringing water to the farmers' fields. Water was never abundant in this region, not even after major canals were constructed. Given the high stakes, conflict over water has always been just beneath the surface of everyday life, erupting from time to time in fights between the irrigators themselves, between irrigators and their own officials, and between groups of irrigators living in the lower reaches of the water systems and their upstream neighbors. Despite this high potential for conflict – and its actual realization from time to time – the institutions devised many centuries ago for govern-

ring the use of water from these rivers have proved adequate for resolving conflicts, allocating water predictably, and ensuring stability in a region not normally associated with high levels of stability. Maass and Anderson (1986) have devoted much effort to studying the institutions used in the

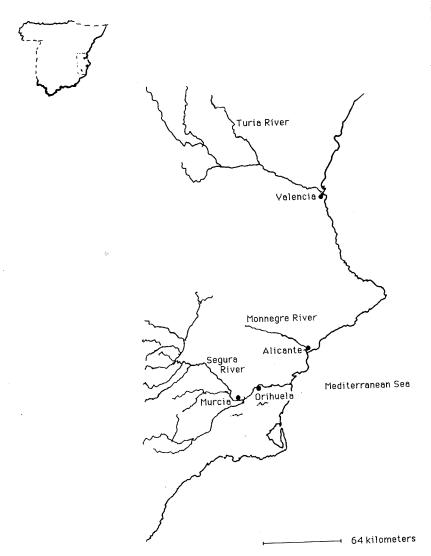


Figure 3.1. Location of Spanish huertas.

Analyzing long-enduring CPRs

huertas (well-demarked irrigation areas surrounding or near towns) of Valencia, Murcia, Orihuela, and Alicante, and Glick (1970) has provided us with an authoritative study of the huerta of Valencia during the Middle Ages.

Valencia

Near the city of Valencia, the waters of the Turia River are divided into eight major canals serving the 16,000-hectare huerta. The farms in Valencia have always been small, but they have become extremely fragmented during the past century. Over 80% of the farms are less than 1 hectare, and few exceed 5 hectares (Maass and Anderson 1986, p. 11). Most winters are frost-free, and the summers are hot and sunny. Farmers are able to harvest two or three crops each year and concentrate largely on potatoes, onions, and a wide diversity of vegetable crops. Each farmer is free to select the cropping patterns he prefers.

Given the low rainfall in Valencia itself, the extensive agriculture of this region would not have been possible without effective use of the Turia River. The variation in the flow of the Turia River has historically been quite high. Years of low water flow have been followed by years of extensive flooding. Until the turn of this century, no dams had been constructed on the Turia River serving the Valencian *huerta*. It was not until 1951, when the Generalisimo Dam was completed, with 228 million cubic meters of storage, that substantial upstream storage was provided to regulate the extreme fluctuations in the river's flow. Some groundwater has been developed in the region to supplement the river's supply, but this has never been a major factor in the supply of irrigation water.

In Valencia, the right to water inheres in the land itself. Land that was watered before the time of the reconquest is specified as irrigated land (regadiu), and the remaining lands in these huertas are dry lands (seca). 11 Some land is entitled to water only in times of abundance (externales). The basic allocation principle in Valencia is that each piece of regadiu land is entitled to a quantity of canal water proportionate to its size.

In Valencia, the irrigators from seven of the major canals are organized into autonomous irrigation communities whose syndic, 12 or chief executive, participates in two weekly tribunals. The Tribunal de las Aguas is a water court that has for centuries met on Thursday mornings outside the Apostles' Door of the Cathedral of Valencia. The many Islamic features of its traditions have led scholars to argue that the court evolved during the period of Islamic rule. 13 Its proceedings are carried on without lawyers, but with many onlookers. A presiding officer questions those who are involved in a dispute and others who may be able to provide additional information,

and the members of the court, excluding the syndic whose canal is involved, make an immediate decision regarding the facts of the case in light of the specific rules of the particular canal. Fines and damages are assessed consistent with the rules of the particular canal. The final decisions of the court are recorded, but not the proceedings. After the court session, the syndics may also convene a second tribunal, which serves as a coordinating committee encompassing all seven of the canals to determine when to institute operating procedures related to seasonal low waters or to discuss other intercanal problems.

The farmers (hereters) who own lands eligible to receive water from each of these seven canals meet every second or third year to elect the syndic and several other officials for their canal. Besides his role in the two tribunals, the syndic is the executive officer of the individual irrigation unit. His responsibilities include the basic enforcement of the regulations of his own unit. He has the power to make authoritative physical allocations of water when disputes arise in the day-to-day administration of the waterworks, to levy fines, and to determine the order and timing of water deliveries during times of severe shortages (subject to weekly review by the Tribunal de las Aguas). The syndic must own and farm land served by the canal. The syndic usually has a small staff of ditch-riders and guards whom he appoints to help him carry out these assignments. 14

In medieval times, the *hereters* also elected two or more inspectors (*veedors*) who were representatives of the community of irrigators and were to consult with the syndic about the daily operation of the canal and assist in rendering physical judgments when conflicts between farmers or between a syndic and a farmer erupted. In modern times, the *hereters* elect an executive committee (*junta de gobierno*) to consult with the syndic until the next biannual meeting. The executive committee is composed of delegates from all of the canal's major service areas. Decisions about when to shut down the canals for annual maintenance and how the maintenance work will be organized are made by the members of this committee of irrigators.

The basic rules for allocating water are dependent on the decisions made by the officials of the irrigation community concerning three environmental conditions: abundance, seasonal low water, and extraordinary drought. In years of declared abundance – a relatively infrequent event – farmers are allowed to take as much water as they need whenever water is present in the canal serving their land.

The most frequent condition under which the canals operate is that of seasonal low water. When the low-water condition is in effect, water is distributed to specific farmers through a complex, rule-driven hydraulic

Analyzing long-enduring CPRs

system. Each distributory canal is positioned in a rotation scheme in relation to the other distributory canals. ¹⁵ Each farm on a distributory canal receives water in a set rotation order, starting from the head of the canal and culminating in the tail end of the canal:

On days when water is running in a lateral . . . those farmers who want to irrigate will take it in turn (por turno), generally in order from the head to the tail of the channel. Once a farmer opens his headgate, he takes all the water he needs, without any restriction of time; and he defines his own needs, principally in terms of the water requirements of the crops he has chosen to plant. The only limitation is that he may not waste water. If a farmer fails to open his headgate when the water arrives there, he misses his turn and must wait for the water to return to the farm on the next rotation. When a lateral operates in rotation and all users who want water at a given time cannot be served before the rotation passes to another lateral, distribution will begin, when water returns, at the point where it previously terminated. (Maass and Anderson 1986, p. 28)

The basic elements of the *turno* system are that (1) the order in which irrigators receive water is fixed, and (2) each farmer can decide how much water to take as long as water is not wasted. Consequently, no irrigator can tell exactly when his turn will come, because that depends on the volume of water in the canal and the quantity needed by those ahead of him. On the other hand, each irrigator knows that he can take as much water as he needs when his turn eventually comes.

In periods of extraordinary drought, these procedures are modified so that farms whose crops are in the most need of water are given priority over farms whose crops require less water. At the beginning of a drought period, the farmers themselves are expected to apply water only to those crops in most need to shorten their turns in order to allow other farmers in need to obtain the scarce water. As a drought period continues, the syndic and his representatives take more and more responsibility for determining how long each farmer may have water, in light of the condition of the farmer's crops and the needs of others. In recent years, procedures to be used in extraordinary drought have been needed less frequently than in earlier times, because of the increased regulatory capacity of the Generalisimo Dam. Even so, an established procedure is in place for switching rule regimes when environmental conditions change.

The level of monitoring that is used in the *huertas* is very high. In this environment of water scarcity and risk, many temptations occur to take water out of turn, or in some way obtain illegal water. As the time approaches for a farmer to take his turn at the water, he will tend his fields near to the canal so that he can be prepared to open his own gate when the water arrives; if not prepared, he misses his turn entirely and must wait for

the next round. While waiting, it is relatively easy to watch what those ahead of him are doing and watch the ditch-riders, whom he is paying. The ditch-riders patrol the canals regularly and are watched over by the syndic, who can lose respect, and his job, if the allocation of water is not handled fairly and according to the farmers' rules. Challenges to the actions of a syndic, a ditch-rider, or another irrigator can be aired weekly before the Tribunal de las Aguas, with many of the other farmers watching the confrontation with interest. The reciprocal monitoring relationships in Valencia are shown in Figure 3.2. Given that everyone is watching everyone else, there is considerable potential for violence among irrigators and between irrigators and their agents. In medieval times, the norms related to honor probably exacerbated the potential for conflict, and hereters "were willing to fight in an instant if they felt that their water supply was jeopardized in any way" (Glick 1970, p. 70). The actual violence never approached the potential.

The survival of the books in which fines were recorded for the years 1443 and 1486 for the nearly similarly structured *huerta* of Castellón, some of the detail of which has been reproduced by Glick, provides a picture of the types of infractions discovered, the high level of monitoring undertaken, and the low level of actual fines during an earlier era. ¹⁶ In 1443 there were 441 fines assessed; in 1486 there were 499 fines (Glick 1970, p. 54). The similarity in the distributions of offenses and the numbers of fines for these two periods more than 40 years apart testifies to the stability of the system. Guards assessed fines at a rate of more than one per day. ¹⁷About two-thirds of the actions were initiated by the guards, and the remaining third by farmers. Forty-two percent concerned infractions that clearly were motivated by the temptation to obtain water not legally available to the farmer (taking forbidden water, stealing water, installing or undoing canal checks illegally, taking water by force, irrigating without

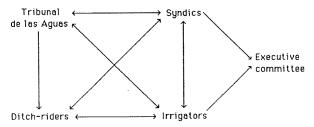


Figure 3.2. Patterns of monitoring and accountability among key actors in the Valencia huerta.

Analyzing long-enduring CPRs

right). The remainder of the infractions related to actions that caused harm to others (flooding a road or a fallow field, wasting water) and were also forbidden by the community. Farmers were held publicly accountable for the errors they committed that caused harm to others. Two-thirds of those fined in a year were "one-time offenders" and were not mentioned again in the fine book. Of those who were repeaters, 41% were involved in two actions, 25% in three, 15% in four, 8% in five, and 12% in more than five (Glick 1970, p. 59).

Sufficient data exist to estimate the rate of conformance to the rules for Castellón. There were approximately 1,000 hearths in Castellón in the fifteenth century (T. F. Glick, personal communication). If the rotation system took about two weeks, each of the roughly 1,000 irrigators would have had about 25 opportunities during the year to take water illegally. Thus, approximately 25,000 opportunities for theft occurred, as contrasted to 200 recorded instances of illegal taking of water. That would give a recorded infraction rate of 0.008. One must assume that the guards did not detect all infractions. One could double, triple, or even quadruple the recorded rate, however, and still have a remarkable conformance rate. 18

Although the conformance rate was high, about one-third of the hereters. would have had one encounter with a guard at some time during a full year.¹⁹ Consequently, information about the extensive monitoring was regularly conveyed to irrigators. We do not have as detailed a picture of the enforcement patterns in modern times, but both the number of ditch-riders employed and the necessity of holding a weekly court session lead one to suspect that high enforcement levels have been required to dampen the ever present temptation to steal water, as well as the potential for interfarmer conflict and violence. The stability of this system has been achieved in spite of personal temptations to cheat and engage in violent behavior. The books of fines also reveal that even though the syndic received two-thirds of the fine (the other third going to the accuser) and the authorized levels for fines were set high, the actual fines assessed "were very low (a few pennies at the most) and also variable, depending on the gravity of the offense, on general economic conditions, and probably on the individual's ability to pay" (Glick 1970, p. 56). Glick comments that this introduced some flexibility into the relatively rigid rotation systems. From time to time, the cost to a farmer of waiting for his next legal turn to receive water, as contrasted to stealing water available in the canal, would be extraordinarily high. Because the fines actually assessed were kept relatively low, the guards did not deeply antagonize the farmers, who generally adhered to the rules. A farmer would suffer some humiliation if detected cheating, but the monetary fine for cooperative farmers would be quite

low. Assessing harsh punishment to someone who usually follows the rules, but in one instance errs in the face of a desperate situation, can engender considerable antagonism and resentment (Oliver 1980).

Only rarely did farmers engage in ongoing harassment of one another. Glick notes one "particularly fractious individual" who made 5 accusations of theft and was himself similarly accused 13 times during 1486; 10 of the 18 incidents were conflicts between members of two families. But such cases are extremely rare in the archival data, and the absence of chronic conflict between farmers is considered by Glick to be "a tribute to both the efficiency of the distribution system and the vigilance of the guards" (Glick 1970, p. 64).²⁰

Murcia and Orihuela

The Segura River runs from west to east as it approaches the Mediterranean, flowing first through the huerta of Murcia and then through the huerta of Orihuela. Of the 13,300 farms included within the service area of the huerta of Murcia, 83% are less than a single hectare. Of the 4,888 farms in the huerta of Orihuela, 64% are less than a single hectare, and 86% are less than 5 hectares. As in Valencia, water rights in Murcia and Orihuela are tied to the land. Regadiu and seca lands were designated long ago and have remained stable for centuries. The quantity of rainfall in the huertas of Murcia and Orihuela is, on the average, considerably less than in Valencia, and it occurs with greater variation. The terrain in Murcia and Orihuela is more varied than the terrain in Valencia, and local procedures involve much more emphasis on the problem of watering highlands and lowlands from the same canal.

Each farmer is assigned a tanda, a fixed time period during which he may withdraw water. Thus, each farmer knows exactly when and for how long he may obtain water, but he does not know exactly how much water may be available at that time. The tanda procedure has some advantages over the turno procedure used in Valencia. Each farmer can plan his activities with a greater degree of certainty as to when he will be able to irrigate. Each farmer is more motivated to economize on the use of water within his own fields because he must make the decision how to allocate a limited time-slice of water to his own fields. On the other hand, the tanda procedure is itself quite rigid, particularly as farms are bought and sold, divided or combined.

The officials of the irrigation community, in consultation with city officials, are responsible for declaring when there is insufficient water to continue the regular tanda procedure. When extraordinary low-water con-

ditions are in effect, the officials of each community post a new schedule for each rotation of the season – approximately every two weeks – indicating which crops will be given precedence and the schedule and special rules to be followed for the next rotation period.

There are about 30 irrigation communities in Murcia, 10 in Orihuela, and several more that take from canals just below Orihuela. In both *huertas*, the communities employ guards, who most frequently come from the canal sections where they are employed and are nominated by the farmers of that section.

The guards patrol the canal and report any violations of the ordinances they observe; act as witnesses where one farmer charges another with a violation or themselves bring charges against farmers; and assist in the distribution of water, frequently opening and closing the principal canal checks and the turnout gate of the principal laterals.

(Maass and Anderson 1986, p. 80)

The irrigation communities within both *huertas* have formed *huerta*-wide organizations. The syndics of the canal communities of Murcia meet yearly in a general assembly and elect members to an executive commission, in addition to approving an annual budget and taxes. The syndics of the canals in Orihuela meet in a general assembly of its *huerta*-wide organization every three years to elect a water magistrate, his lieutenant, and a solicitor. The water magistrate presides at all assemblies within Orihuela. The *huerta*-wide agency performs activities similar to those undertaken in Murcia. The city of Orihuela is hardly involved in irrigation activities within its limits.

Both huertas have established water courts in which farmers can bring charges against each other or in which officials can charge a farmer with an offense. Murcia's water court – which has the felicitous name of the Council of Good Men (Consejo de Hombres Buenos) – is composed of five canal syndics and two inspectors. Because Murcia has 30 organized communities, the names of all syndics and inspectors for all systems are placed in two bowls at the beginning of each year, and each month a new court is selected by lottery so that each canal will be represented in an equitable fashion. The Murcian court meets every Thursday morning in the City Hall and is presided over by the mayor of Murcia (or his deputy), who votes only in case of a tie. Not only is the day of meeting similar to that in Valencia, but the general procedures are the same: "oral, public, summary, and cheap" (Maass and Anderson 1986, p. 82).

The water court in Orihuela has only a single judge, and its procedures differ substantially from those in Murcia and Valencia. Those who wish to bring charges against others do so to an officer of the court. The person accused is then summoned to appear before the magistrate within a few

days. A sentence is imposed immediately if the person accused confesses to the charge. Otherwise, the magistrate tries to get those involved to come to an agreement that he can accept.

Alicante

Whereas the Segura and Turia rivers drain large watersheds, including mountain ranges where winter precipitation is stored in the form of snow and released later, the Monnegre River serving Alicante rises near the sea and drains only a small area. The even greater shortage of water in this huerta, as contrasted to Valencia and Murcia-Orihuela, which themselves do not have an abundant supply of water, has affected the strategies that the irrigators in Alicante have adopted. The basic water right in Alicante is closer to that of Murcia than to that of Valencia. All water rights are to a fixed time period. Originally, these time allocations were tied to land ownership. Shortly after Alicante was recovered from the Muslims, rights to withdraw water for fixed time periods were separated from ownership of land, and a market in these rights existed apart from the market for land. Alicante farmers took the initiative to construct the Tibi Dam in 1594, which at times has led to greater involvement of national and regional authorities in the management of irrigation in Alicante than in Valencia or Murcia-Orihuela. Local irrigators have sought out still other sources of water, and that has involved them in extensive contractual arrangements with large-scale private water companies.

The 3,700 hectares of huerta land are divided among 2,400 farms, 63% of which are less than 1 hectare, and 93% of which are less than 5 hectares (Maass and Anderson 1986, p. 101). Alicante farmers have adopted a mixed strategy of growing cereals and vegetables between rows of fruit and nut trees. Prior to the construction of the Tibi Dam, many owners of land sold their water rights to others or regularly rented their rights. Consequently, a fixed quantity of water rights existed prior to construction of the dam, and those rights were traded independently of land transactions. Tibi Dam made available twice as much usable irrigation water as the unregulated river had provided. The rights to the "new water" created by the Tibi Dam were assigned to owners of huerta land whose assessments paid for the dam.²¹ The rights to the other half of the water supply - the "old water" - were held by those who had already acquired rights prior to construction of the dam. A new proviso was added to these rights that they could be sold or rented only to those who owned land eligible to receive new water. Consequently, the water rights could not be sold to individuals whose land lay outside the huerta. Although the rights to new water were

Analyzing long-enduring CPRs

originally attached to the land, those rights were soon "rented" from time to time by farmers who did not need all of their water for a particular rotation.

Prior to a full rotation of water through the irrigation community's canals, a notice is posted by the syndicate providing information about the dates of the next rotation and the times during which "scrip" will be issued. Holders of both new and old water rights obtain scrip equivalent to their recorded water rights in denominations from one hour down to one-third of a minute. All scrip for Tibi water is fully exchangeable. Farmers who hold new-water rights, and thus land within the huerta, rarely have sufficient scrip to obtain enough water to irrigate their crops. They can purchase scrip in three ways: at an informal market among holders of rights conducted on Sunday morning before a formal auction is held; at the formal auction; and on market days, when farmers are congregating for trade.

In the formal auction, the irrigation community sells the approximately 90 hours of water that it owns – water rights assigned to it by the irrigators in 1926 to provide a regular income for the syndicate's operations.²² The syndicate also sells any surplus scrip that was not claimed by right-holders during the previous allotted time period. The minimum quantity of water offered in the formal auction is a full hour, but the purchased scrip is fully divisible and negotiable. Considerable information is made available by the irrigation community to enable farmers to make intelligent choices.

The ditch riders are present . . . and can tell a farmer when the water is likely to reach his property. The organization posts on a bulletin board outside the tavern a current report of water storage in the reservoir; a full account of all water delivered in the previous rotation, including the names of irrigators and the amounts of water delivered to each; and a full accounting of all water sold at auction in the previous rotation, including the names of all successful bidders, the number of hours each purchased, and the prices paid.

(Maass and Anderson 1986, p. 116)

A farmer who wants to irrigate his land during a particular rotation tells his ditch-rider - who opens and closes all of the relevant control structures how much time he wishes to use. The ditch-rider, in turn, informs the farmer approximately when the water will be available. The farmer is supposed to pay the ditch-rider when water is delivered, but the practice is to allow a farmer up to three days after a rotation has been completed. At that time, the ditch-rider's report of all water delivered and equivalent scrip must be turned in. Thus, farmers purchase scrip not only for future deliveries but also to cover fully what they have used during the current rotation. The price of water is consequently higher toward the end of a

rotation than at the beginning of one.²³ The price of water also varies in relation to the amount of water available. In years of abundant rainfall, farmers need less irrigation water, and the price of Tibi water falls. In times of extreme drought, there may not be any water to distribute, and the auction will not occur until water is available. In periods of seasonal low water, the price of water may become very high and can be a source of considerable conflict between holders of old rights versus holders of new rights. Alicante farmers may also purchase water from several other sources.²⁴

The organization of the irrigation community in Alicante differs significantly from that for the *huertas* discussed earlier. First, there is only one irrigation community for the entire *huerta*. Second, to vote in the general assembly of the community, a farmer must own 1.8 hectares of land; to vote for the executive commission, 1.2 hectares of land; and to be eligible to serve on the commission, 3.6 hectares of land (Maass and Anderson 1986, p. 117). Whereas a farmer must own a minimum of land to participate, the votes of farmers owning more land are not weighted to reflect differences in the amounts of land owned. The executive commission is composed of 12 representatives (*sindicos*) who serve four years each (half rotating every second year). One member from this body is selected as the director.

The general assembly meets annually to approve the budget and taxes and to decide matters brought before it by the executive commission. Special meetings can be called when problems arise requiring action between the annual meetings. Both the executive commission and the assembly have been extremely active in Alicante in the repeated efforts to find new water and to attempt to develop better contractual arrangements with the private firms using the community's canal to sell water in the huerta. The regular expenses of the community are assessed against the holders of all water rights. Three rotations each year are designated as those during which regular taxes will be collected, and a right-holder must pay the assessment at the time of applying for scrip. Extraordinary expenses, which at times have been quite high, are also assessed in the same manner, except that the payment is due at a different set of rotations during the year.

The commission employs an executive secretary, as well as all those who operate the control structures and deliver the water directly to the farmer. The ditch-riders open and close all farm headgates in Alicante. The farmers do this themselves in Valencia and Murcia-Orihuela. The ditch-riders of Alicante, however, exercise less discretion in determining who shall receive water and when. One employee is given the responsibility of accounting for

Analyzing long-enduring CPRs

the water that has left the regulating basins until it reaches a ditch-rider, who is again accountable for all of the water that is assigned to him.

National authorities have exerted more control over irrigation matters in Alicante than in the other *huertas*. A large structure, such as Tibi Dam, can be seized and used as a source of revenue and power by a rent-seeking ruler. Although Philip II did not attempt to exercise control over the Tibi Dam when it was built, the dam was transferred to royal ownership for a century in 1739. When control of the dam and responsibility for distributing its water were returned to Alicante in 1840, farmers did not win the right to select syndicate officers for another 25 years. The Spanish Civil War also interrupted the control that farmers exercised over the irrigation syndicate. It was not until 1950 that farmers again selected their own officials.

It should be noted that the degree of freedom to devise and change their own institutions, successfully asserted by the irrigators of eastern Spain, was not typical of the Castilian part of Spain, whose far more centralized institutions were the major influences on the evolution of Spanish national institutions.25 By the end of the thirteenth century, the cortes of the kingdom of Aragon (roughly comprising Valencia, Aragon, and Catalonia) had "already secured the power to legislate and even to limit the king's power to issue legislation under certain conditions" (Veliz 1980, p. 34). The cortes in Castile, at the same time in history, was seldom summoned. By the time the centralized monarchy based on the Castilian model came to dominate Spain and Latin America, the autonomy of the huertas was well established. The continuing willingness of the irrigators in these regions to stand up for their rights attests that they had greater autonomy than did those in other parts of Spain. One can only wonder if the course of history in Latin America might have differed substantially if the Spanish monarchy established by Ferdinand and Isabella had been modeled on Aragon and not on Castile.26

Maass and Anderson have conducted an interesting evaluation of the comparative efficiencies of the Spanish huertas and several systems operating in the western part of the United States. Without including the costs of water or the administrative costs associated with governing and managing the canals, they find that the system that has evolved in Alicante enables farmers to be most efficient in using other input factors. The system devised in Valencia is the least efficient of the Spanish systems, with the Murcia-Orihuela systems coming in between. All of the systems generate positive benefits for the farmers they serve, and all have shown an amazing capacity to survive. In 1887, the Murcian historian Diaz Cassou concluded that "the democratic and representative character of the agricultural commune of Murcia had shown a remarkable stability, for a succession of very different

national political epochs had offered no serious obstacles to its continued function" (Maass and Anderson 1986, p. 83). A century later, Cassou's reflection remains valid.

1

ZANJERA IRRIGATION COMMUNITIES

The earliest recorded reference to the existing irrigation societies in the Ilocanos area of Ilocos Norte in the Philippines derives from Spanish priests writing in 1630 (H. Lewis 1980, p. 153). No serious effort has been made to determine if similar organizations were in existence before the Spanish colonial period, but it would not be unreasonable to assume that the modern zanjeras are derived from a mixture of traditions, including that of the Spanish. The most striking similarity between the huerta and zanjera systems is in the central role given to small-scale communities of irrigators who determine their own rules, choose their own officials, guard their own systems, and maintain their own canals. The internal organization of each zanjera has been tailored to its own history, and thus the specific rules in use vary substantially (Keesing 1962). In 1979 there were 686 communal irrigation systems in Ilocos Norte (Siy 1982, p. 25).²⁷

Zanjeras have been established both by landowning farmers wanting to construct common irrigation works and by individuals organizing themselves so as to acquire land. The technologies used in zanjera systems are relatively crude and labor-intensive. The large number of operating systems and the amount of labor put into these by farmers – tenants as well as landowners – have meant that technological knowledge of how to construct dams and other works has been widely shared. With this knowledge, it has been possible for enterprising tenant farmers to band together to construct an irrigation system on previously nonirrigated land in return for the right to the produce from a defined portion of the newly irrigated land.

This type of contract – called a biang ti daga or a "sharing of the land" – allows the landowner to retain ownership. Use rights are extended to the zanjera dependent on continued maintenance of the irrigation system. At the time of forming an association, each original participant in the zanjera is issued one membership share or atar. The total number of atars is set at that point. 28 The share gives each member one vote and the right to farm a proportionate share of the land acquired by the zanjera, and it defines the obligation of the member for labor and material inputs. Each atar-holder is obligated to contribute one day's work during each work season declared by the zanjera, plus a share of the material required at construction time. The system was thus developed as a mode of acquiring long-term use rights

Analyzing long-enduring CPRs

to land and the water to irrigate it without prior accumulation of monetary

Each zanjera is laid out differently, but all that were set up by a biang ti daga contract share an underlying pattern. The area is divided into three or more large sections. Each farmer is assigned a plot in each section. All members are thus in fundamentally symmetrical positions in relation to one another. Not only do they own rights to farm equal amounts of land, but they all farm some land in the most advantageous location near the head of the system, and some near the tail. In years when rainfall is not sufficient to irrigate all of the fields, a decision about sharing the burden of scarcity can be made rapidly and equitably by simply deciding not to irrigate the bottom section of land.

Several parcels are set aside for communal purposes. A few parcels, located at the tail end of the system, are assigned to officials of the association as payment for their services. This system not only provides a positive reward for services rendered but also enhances the incentives for those in leadership positions to try to get water to the tail end of the system. Other lands are retained to secure income for the zanjera itself. See the work of Coward (1979, 1985) for a detailed description of this system.

The members of each zanjera elect a maestro as their executive officer, a secretary, a treasurer, and a cook.²⁹ In the larger associations, they also select foremen and team leaders to supervise the construction activities. The maestro has the challenging job of motivating individuals to contribute many hours of physically exhausting labor in times of emergency, when control structures have been washed out, and for routine maintenance. Given the backbreaking efforts required during the monsoon season or during extremely hot weather, this motivational task is of substantial proportions. The maestro is, of course, not dependent simply on his persuasive powers. Many real inducements and sanctions are built into these systems by the rules that zanjera members have constructed for themselves.

To illustrate the task involved in governing these systems, we shall consider one of these systems – actually, a federation of nine zanjeras – in more detail, based on the work of Robert Siy (1982). The Bacarra-Vintar federation of zanjeras constructs and maintains a 100-meter-long brush dam that spans the Bacarra-Vintar River, located on the northwestern tip of Luzon Island approximately 500 kilometers north of Manila. The unpredictable and destructive Bacarra-Vintar River drains the northeastern parts of the provinces. During the rainy season each year, the river destroys the federation's dam, which is constructed of bamboo poles, banana leaves, sand, and rock. During some years the dam will be destroyed three or four times.

(

X

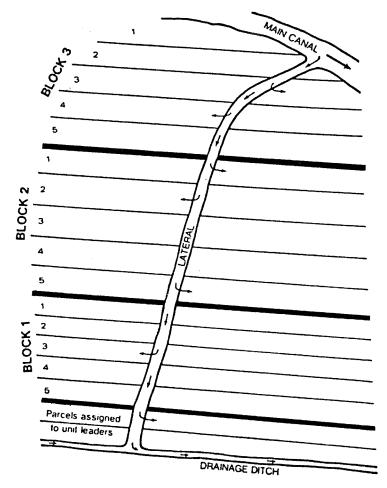


Figure 3.3. Typical layout of zanjera fields. (Adapted from Coward 1979.)

The histories of the nine component zanjeras, like that of the federation itself, have not been well preserved. What is known is that most of them were established independently and tried to construct and maintain their own diversion works from the river. The river has changed course several times in its history, and at various times some of the zanjeras have been cut off from their source of water by such changes. Two of the zanjeras were already associated during the nineteenth century and jointly constructed

one dam and canal. A formal agreement dated 1906 was written when a third zanjera joined their federation. Other existing systems joined slowly through the 1950s. The last two zanjeras entered at the time of their formation (Siy 1982, pp. 67-8).

In 1978 the federation formally incorporated as a private corporation in response to the 1976 Philippine Water Code, which defined only individuals or "juridical persons" as eligible to obtain water rights. Given the history of litigation in the area (M. Cruz, Cornista, and Dayan 1987), members of the federation wanted secure water rights in the name of the federation itself, rather than in the name of individual zanjeras. The heads of all the component zanjeras form the board of directors, with the maestro of the Surgui zanjera — one of the founding zanjeras — named as the president and chairman of the board. In 1980 there were 431 individuals who owned shares, or parts of shares, in at least one zanjera. Many members were involved in more than one of the zanjeras. The smallest component zanjera had 20 members, and the largest had 73 members (Siy 1982, p. 85). Each zanjera is responsible for its own financial and internal affairs and owes no financial obligations to the federation.

The board of directors determines when the dam should be rebuilt or repaired. Rebuilding takes about a week – somewhat more when the weather is unfavorable – and involves several hundred persons. Each zanjera is responsible for bringing construction materials and providing work teams (and the cooks and food to feed them). After spending a day preparing banana and bamboo mats, work teams in heavy boats confront the swirling waters to begin pounding in the poles that form the foundation for the dam. Then the mats are woven around the poles and reinforced with sand and rock.

Each of the five zanjeras with the largest numbers of atars provides one work team. The four smaller associations form two work teams. As the dam is laid out, it is divided, by the use of a "flexible" rod, into seven sections that are roughly proportional to the sizes of the work teams and the difficulty of the terrain. This work assignment pattern allows each group to monitor the progress of other groups and engenders some spirited competition among them. The work of maintaining the main canal is also assigned in a similar manner. Work on distributory canals is organized by leach zanjera, which has divided itself into smaller work teams called gunglos, composed of 5 to 10 members.

Siy computed the total obligations (including work as well as attendance at meetings and celebrations) of *zanjera* members to their own associations and to the federation for 1980. The owner of a full *atar* share of the Santo Rosario *zanjera* was obligated to contribute 86 days during 1980 (the

largest obligation), whereas an owner of a full share in the Nibinib zanjera was obligated to contribute 32 days (the lowest). The average across the federation was 53 days (Siy 1982, p. 92). Given that some atars are held jointly by several farmers, the average number of days per working member is somewhat less $\frac{1}{2}$ around 39 days for the year.

In terms of the contemporary schedule of 5 days per week, this amounts to two months of work supplied without direct monetary payment. ³⁰About 16,000 man-days were supplied by members to their own zanjera or federation during the year. ³¹ As Siy reflects, "there are definitely few rural organizations in the developing world which have been able to regularly mobilize voluntary [sic] labor to such extent" (Siy 1982, p. 95). ³² Given the rigorous and at times dangerous nature of the work, the level of attendance at these obligatory sessions is rather amazing. ³³ On average, members were absent somewhat over 2 days out of their required 39, making the attendance rate about 94%. Fines assessed for nonattendance were fully paid in five of the zanjeras, and only one of the zanjeras had a substantial problem with the payment of fines (Siy 1982, p. 98). ³⁴

Over time, zanjeras face the problem of increased fragmentation of the original shares. A founding member with three sons, for example, may bequeath his plots to be distributed evenly among his sons, each of whom then assumes one-third of the obligations that their father had to fulfill (and having access to only one-third of the land). The individual zanjeras have responded to fragmentation in several ways. Some zanjeras appoint one person to be responsible for the fulfillment of atar responsibilities so that the associations do not have to monitor intra-atar work contributions or shirking. Some of the zanjeras now require prior approval before a share is sold or tenants are allowed to work zanjera land.

Prospective members are "screened," and made to understand the full extent of their obligations to the zanjera before the transaction or tenancy agreement is approved. In a few cases, new members have been required to sign an agreement affirming their recognition of the zanjera's by-laws. These by-laws usually stipulate that erring members may be suspended or expelled from the zanjera, and their lands, confiscated.

(Siy 1982, p. 101)

Given the great numbers of the landless population in the area, there is still fierce competition to gain access to land.

Water-allocation rules are not quite as restrictive in these systems as are work-contribution rules. In general, the supply of water to the irrigation system is more than adequate to meet the needs of the farmers, given the current cropping patterns and soil types involved. When water is abundant, water flows throughout the entire system, and anyone can irrigate at will. When water is scarce, rotation systems are established among the zanjeras,

Analyzing long-enduring CPRs

and within zanjeras among the various distributory canals. During extremely dry periods, downstream zanjeras are allowed the full flow of the system for several nights in a row. After notification and agreement, the downstream zanjera sends its gunglos upstream to set up checks and close turnouts. "Other members 'stand guard' to ensure that such temporary control devices remain in place. Other groups attend to the actual delivery of water to individual parcels" (Siy 1982, p. 122). Precedence is given to parcels with the greatest need, and then a regular rotation system is established.

Several of the downstream zanjeras harvest only one crop per year, but two crops are possible in the higher zanjeras. Siy presents clear evidence that it would be possible to reallocate water among the nine zanjeras so as to increase the productivity of the lower zanjera lands without a loss in productivity by the head-end zanjeras (Siy 1982, pp. 122–45). On the other hand, the distribution of water is roughly proportional to the contributions of labor and materials and to atar shares. Thus, the three zanjeras that contribute most of the labor and materials (48%) receive 55% of the water, the three zanjeras that contribute 30% of the labor and materials receive 25% of the water, and the three zanjeras that contribute 22% of the labor and materials receive 20% of the water.³⁵

From the perspective of technical efficiency, the system is not as efficient in its water-allocation scheme as it could be. Siy is, however, extremely careful to point out that many costs besides those of output forgone are involved in designing and running such systems:

The costs may be in the form of the time and energy expended in deciding on an acceptable arrangement or in adjusting to an externally-imposed procedure. . . . For example, a shift in the distribution of water may necessitate a shift in the distribution of obligations among zanjeras. A zanjera that ends up receiving more water may then be required to contribute a larger proportion of labor and materials for system maintenance in order to satisfy the demands for sharing obligations in proportion to the increased benefits received. However, there is always the danger that the individual zanjera involved may not possess the immediate capability to meet such requirements, and, as such, these new demands on their resources may actually undermine the stability or solidarity of the whole organization. (Siy 1982, p. 146)

The major criterion used by irrigation engineers to evaluate the performance of an irrigation system is whether or not a system is technically efficient in the sense that water is allocated optimally to enhance crop production. The federation falls short in regard to this criterion, but it performs well in regard to mobilization of personnel for construction and maintenance activities. The members of the federation perceive the alloca-

tion of water to conform to legitimate formulas that they have themselves devised, rather than to formulas devised by external experts. As we shall see in Chapter 5, when external experts, working without the participation of the irrigators, have designed systems with the primary aim of achieving technical efficiency, they frequently have failed to achieve either the hoped-for technical efficiency or the level of organized action required to allocate water in a regular fashion or to maintain the physical system itself.

Because many members of the lower zanjeras also participate in other zanjeras, many own lands that receive adequate or more than adequate quantities of water, thus offsetting those lands that are left dry part of the year. In a survey of zanjera members, respondents from the lower zanjeras were more likely than members of upstream zanjeras to report a lack of water during part of the year. But when asked what major irrigation problems they faced, none "had anything to say about the way water was allocated or about the fairness of water distribution" (Siy 1982, p. 141). The problem cited by 65% of the irrigators surveyed was the hardship associated with the annual damage to their dam.

SIMILARITIES AMONG ENDURING, SELF-GOVERNING CPR INSTITUTIONS

COMPEXITY Despite all of the differences among the CPR settings described in this chapter - and substantial differences exist - all share fundamental similarities. One similarity is that all face uncertain and complex environments. In the mountain commons, the location and timing of rainfall cannot be predicted. In the irrigation systems, erratic rainfall is again a major source of uncertainty. Whereas the construction of physical works tends to reduce the level of uncertainty, it tends to increase the level of complexity in these systems. Irrigators must have practical engineering skills as well as farming skills.

In contrast to the uncertainty caused by these environments, the populations in these locations have remained stable over long periods of time. Individuals have shared a past and expect to share a future. It is important for individuals to maintain their reputations as reliable members of the community. These individuals live side by side and farm the same plots year after year. They expect their children and their grandehildren to inherit their land. In other words, their discount rates are low If costly investments in provision are made at one point in time, the proprietors - or their families - are likely to reap the benefits.

Extensive norms have evolved in all of these settings that narrowly define "proper" behavior. Many of these norms make it feasible for in-

Analyzing long-enduring CPRs

dividuals to live in close interdependence on many fronts without excessive conflict. Further, a reputation for keeping promises, honest dealings, and reliability in one arena is a valuable asset. Prudent, long-term-self-interest reinforces the acceptance of the norms of proper behavior. None of these situations involves participants who vary greatly in regard to ownership of assets, skills, knowledge, ethnicity, race, or other variables that could strongly divide a group of individuals (R. Johnson and Libecap 1982).

The most notable similarity of all, of course, is the sheer perseverance manifested in these resource systems and institutions. The resource systems clearly meet the criterion of sustainability. The institutions meet Shepsle's (1989b) criterion of institutional robustness, in that the rules have been devised and modified over time according to a set of collective-choice and constitutional-choice rules. These cases were specifically selected because they have endured while others have failed. Now the task is to begin to explain their sustainability and robustness, given how difficult it must have been to achieve this record in such complex, uncertain, and interdependent environments in which individuals have continuously faced substantial incentives to behave opportunistically.

The specific operational rules in these cases differ markedly from one another. Thus, they cannot be the basis for an explanation across settings. In the Japanese mountain commons, for example, appropriation rights and provision duties are assigned to established family units in a village instead of to individuals. In the Swiss mountains, appropriation rights and provision duties are inherited by individual males who own private property in the village and remain citizens of the village. In eastern Spain, a farmer's right to irrigation water is based on the parcel of land inherited, purchased, or leased, not on a relationship to a village. In the Philippines, a complex contract among long-term usufructuary right-holders determines rights and provision duties. The rules defining when, where, and how an individual's allotted resource units can be harvested or how many labor days are required also vary considerably across cases.

Although the particular rules that are used within these various settings cannot provide the basis for an explanation of the institutional robustness and sustainability across these CPRs, part of the explanation that I offer is based on the fact that the particular rules differ. The differences in the particular rules take into account specific attributes of the related physical systems, cultural views of the world, and economic and political relationships that exist in the setting, Without different rules, appropriators could not take advantage of the positive features of a local CPR or avoid potential pitfalls that might be encountered in one setting but not others.

Instead of turning to the specific rules, I turn to a set of seven design

89

EMY QUESTI